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During the last few years, the endocannabinoid system has emerged as a highly relevant

topic in the scienti�c community. Many di�erent regulatory actions have been

attributed to endocannabinoids, and their involvement in several pathophysiological

conditions is under intense scrutiny. Cannabinoid receptors, named CB1 receptor and

CB2 receptor, �rst discovered as the molecular targets of the psychotropic component

of the plant Cannabis sativa, participate in the physiological modulation of many central

and peripheral functions. CB2 receptor is mainly expressed in immune cells, whereas

CB1 receptor is the most abundant G protein-coupled receptor expressed in the brain.

CB1 receptor is expressed in the hypothalamus and the pituitary gland, and its

activation is known to modulate all the endocrine hypothalamic-peripheral endocrine

  

We use cookies to enhance your experience on our website. By clicking 'continue' or
by continuing to use our website, you are agreeing to our use of cookies. You can
change your cookie settings at any time.

Continue
Find out more

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1210/er.2005-0009
javascript:;
https://academic.oup.com/edrv/article-pdf/27/1/73/8861930/edrv0073.pdf
https://s100.copyright.com/AppDispatchServlet?publisherName=OUP&publication=1945-7189&title=The%20Emerging%20Role%20of%20the%20Endocannabinoid%20System%20in%20Endocrine%20Regulation%20and%20Energy%20Balance&publicationDate=2006-02-01&volumeNum=27&issueNum=1&author=Pagotto%2C%20Uberto%3B%20Marsicano%2C%20Giovanni&startPage=73&endPage=100&contentId=10.1210%2Fer.2005-0009&oa=&copyright=Oxford%20University%20Press&orderBeanReset=True
javascript:;
https://www.endocrine.org/
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvk19d9fOe1r2UjIlAUURpDVweGIYC5kiIPb9wWT49A8yIy6PBtA7VUNYHiLiOTopXSWU33NbFGseBlsH-cAKoQpvrla_fSPkK8pgSyE4ZcwyYuhAzBGc1KY3Rz1WkzL6EJbSlmBCRvnfAxqoaVwevClMKUolHt08ZxMEVIR0-M2YbBDDjn9Hsz1o2eZfBzGosHRmbXXYX0ukUFMXWuEzIr_eIHOzeA6XqpX5wGsEbw5QK5aw&sai=AMfl-YRBZn9rvCRNeBept7ggsuK9bRj_fcSzCIHxc8Uy0H_hGwt58KAiGr5EOfafKueZG2hShX7pS5F24bTOFgEG7athmMFJWX4C32H4_SmWgwMuNZR4V2ETsyFGpS-MrOnOVZ2s&sig=Cg0ArKJSzKY_okh2vtn7&adurl=https://academic.oup.com/edrv/pages/Author_Guidelines_2018&nm=1
https://academic.oup.com/edrv
https://academic.oup.com/
http://global.oup.com/cookiepolicy/?siteid=journals&lang=en_GB


6/23/2018 Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance | Endocrine Reviews | Oxford Academic

https://academic.oup.com/edrv/article/27/1/73/2355171 2/93

Skip to Main Content

Issue Section:  Articles

I. Introduction

II. The Endocannabinoid System

A. Cannabinoid receptors

B. Endocannabinoids

C. Cannabinoid agonists

D. Cannabinoid type 1 receptor antagonists

III. Exogenous and Endogenous Cannabinoids and Their Role in Endocrine Regulation

A. Cannabinoids and the hypothalamic-pituitary-adrenal axis

B. The role of cannabinoids in GH secretion

C. Cannabinoids and the hypothalamic-pituitary-thyroid axis

D. The role of cannabinoids in prolactin secretion

axes. An increasing amount of data highlights the role of the system in the stress

response by in�uencing the hypothalamic-pituitary-adrenal axis and in the control of

reproduction by modifying gonadotropin release, fertility, and sexual behavior.

The ability of the endocannabinoid system to control appetite, food intake, and energy

balance has recently received great attention, particularly in the light of the di�erent

modes of action underlying these functions. The endocannabinoid system modulates

rewarding properties of food by acting at speci�c mesolimbic areas in the brain. In the

hypothalamus, CB1 receptor and endocannabinoids are integrated components of the

networks controlling appetite and food intake. Interestingly, the endocannabinoid

system was recently shown to control metabolic functions by acting on peripheral

tissues, such as adipocytes, hepatocytes, the gastrointestinal tract, and, possibly,

skeletal muscle. The relevance of the system is further strenghtened by the notion that

drugs interfering with the activity of the endocannabinoid system are considered as

promising candidates for the treatment of various diseases, including obesity.
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I. Introduction

THE FIRST STEPS in the discovery of the endocannabinoid system date back almost 4000 yr,

when the therapeutic and psychotropic actions of the plant Cannabis sativa were �rst

documented in India (1). Over the last 40 yr, after Gaoni and Mechoulam (2) puri�ed the

psychoactive component from hemp, a stunning amount of research has revealed the

endocannabinoid system as a central modulatory system in animal physiology.

Elements of the endocannabinoid system comprise the cannabinoid receptors, the

endogenous lipid ligands (endocannabinoids), and the machinery for their biosynthesis and
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metabolism (3, 4). Despite public concern related to the abuse of marijuana and its

derivatives, the research on the endocannabinoid system has recently aroused enormous

interest not only for the physiological functions, but also for the promising therapeutic

potentials of drugs interfering with the activity of cannabinoid receptors. This review aims to

provide an overview on the pivotal role of the endocannabinoid system in the modulation of

the neuroendocrine and peripheral endocrine systems. Moreover, in the context of the

recently proposed therapeutic applications of cannabinoid receptor antagonists in the

treatment of obesity, the key role of the endocannabinoid system in the control of eating

behavior, food intake, and energy metabolism will be discussed in the light of the recent data

obtained from human and animal studies.

II. The Endocannabinoid System

The large and widespread medical, religious, and recreational use of marijuana throughout

the ages was apparently not su�cient to initiate careful and extensive research on

cannabinoids until the last few decades of the 20th century. Conversely, the political

antimarijuana attitude in the United States and the consequent prohibition in the 1930s did

not help to encourage scienti�c interest on this topic. In the 1960s, the growing public

concern regarding the potential negative healthy e�ects of cannabinoids associated with the

exponential increase in its recreational use forced governmental institutions to invest

resources to understand the modes of action of marijuana and the pathophysiological

implications of its use in more detail. Cannabinoid research received a pivotal boost from the

characterization of the chemical structure of Δ -tetrahydrocannabinol (Δ -THC), the main

psychoactive constituent of marijuana (2). This �nding paved the way to the understanding

of marijuana’s mechanisms of action and, many years later, to the cloning of the two

receptor subtypes that are able to bind exogenous cannabinoids, named cannabinoid receptor

type 1 (CB1 receptor) and type 2 (CB2 receptor), respectively, and to the identi�cation of their

endogenous ligands: the endocannabinoids (5–9). Cannabinoid receptors,

endocannabinoids, and the machinery for their synthesis and degradation represent the

elements of a novel endogenous signaling system (the so-called endocannabinoid system),

which is involved in a plethora of physiological functions (3, 4). During the last few years, an

overwhelming amount of data has been acquired to understand the biological roles of this

system in more detail. However, many questions are still open, and promising new

discoveries await us in the near future.

In general, the endocannabinoid system is involved in many di�erent physiological

functions, many of which relate to stress-recovery systems and to the maintenance of

homeostatic balance (10). Among other functions, the endocannabinoid system is involved in

9 9



6/23/2018 Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance | Endocrine Reviews | Oxford Academic

https://academic.oup.com/edrv/article/27/1/73/2355171 5/93

Skip to Main Content

neuroprotection (11–13), modulation of nociception (14), regulation of motor activity (15),

and the control of certain phases of memory processing (16–18). In addition, the

endocannabinoid system is involved in modulating the immune and in�ammatory responses

(19–21). It also in�uences the cardiovascular and respiratory systems by controlling heart

rate, blood pressure, and bronchial functions (22). Finally, yet importantly,

endocannabinoids are known to exert important antiproliferative actions in tumor cells (23).

A full discussion of the plethora of functions of the endocannabinoid system in maintaining

homeostasis is beyond the scope and space of the present review. However, the reviews cited

in this article will further help to obtain a broad insight into the physiological roles of the

endocannabinoid system.

A. Cannabinoid receptors

Two cannabinoid receptors have been identi�ed and molecularly characterized so far,

namely the seven transmembrane G protein-coupled cannabinoid receptor type 1 (CB1

receptor) (6) and type 2 (CB2 receptor) (7). CB1 receptor was originally described as the

“brain type” cannabinoid receptor, because its levels of expression were high in the brain

(24). However, recent studies attribute new sites of action of endocannabinoids to many

peripheral organs through CB1 receptor activation. The generalization for CB1 receptor being

the eminent “brain type” receptor is therefore no longer appropriate. Conversely, CB2

receptors are present almost exclusively in immune and blood cells, where they may

participate in regulating immune responses (25). However, CB2 receptors also exert

functions in nonimmune cells such as keratinocytes (26). Pharmacological evidence exists

for the presence of other cannabinoid receptors, which, however, have not yet been cloned

(27). The endocannabinoid anandamide is also able to bind to and activate vanilloid

receptors, transient receptor potential vanilloid type 1 (28), and to inhibit TASK-1 K

channels (29). Moreover, pharmacological studies indicate that still unidenti�ed additional

cannabinoid receptors might exist in the hippocampus, modulating the release of glutamate

(30), and on endothelial cells (31). Two patents have been recently published claiming that a

number of cannabinoid ligands also bind to GPR55, an orphan G protein-coupled receptor,

suggesting that this receptor might represent a novel target of cannabinoid action (32). CB1

receptor, however, is the best characterized target of exogenous and endogenous

cannabinoids in the modulation of neuroendocrine and metabolic responses, and this review

will focus mainly on this receptor.

1. CB1 receptor expression in the brain

Cannabinoid receptor distribution was studied by means of autoradiography of ligand-

receptor binding on slide-mounted rat brain sections (24, 33), by in situ hybridization (ISH)

+
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(34–36), by autoradiography in human brain (37), by immunohistochemistry (IHC) (38–41),

and by agonist-stimulated [ S]GTPγS binding to slide-mounted sections (42, 43).

Expression studies showed very early that CB1 receptor is one of the most abundant G

protein-coupled receptors in the mammalian brain (24). CB1 receptors are widely expressed

in the brain, including the olfactory bulb, cortical regions (neocortex, pyriform cortex,

hippocampus, and amygdala), several parts of basal ganglia, thalamic and hypothalamic

nuclei, cerebellar cortex, and brainstem nuclei. The levels of expression vary considerably

among the various brain regions and neuronal subpopulations. For instance, agonist-

mediated receptor binding revealed high densities of CB1 receptor protein in the cornu

ammonis pyramidal cell layers of the hippocampus (24), which was later shown by IHC to be

due to a dense plexus of immunoreactive �bers deriving from γ-aminobutyric acid (GABA)-

ergic interneurons and surrounding the cell bodies of pyramidal cells, which appear per se to

be devoid of CB1 receptor protein (38, 41, 44). However, pyramidal cells of the hippocampus

and other cortical regions do express low but signi�cant levels of CB1 receptor mRNA (34,

36), indicating the possibility that CB1 receptor protein in these cells is localized on distal

projections and/or is expressed at low levels, which are below the limit of detectability with

currently available immunohistochemical methods. A similar situation is present also in

other cortical regions, such as the amygdala, neocortex, entorhinal cortex, and piriform

cortex.

In subcortical regions, CB1 receptor is present at relatively high levels in the septal region

(lateral and medial septum, and vertical and horizontal nuclei of the diagonal band). Lower

levels of expression are present in hypothalamic regions, such as the medial and lateral

preoptic nucleus, magnocellular preoptic nucleus, and paraventricular nucleus (PVN) (36). In

the caudal hypothalamus, CB1 receptor is expressed in the premammillary nucleus. In the

lateral hypothalamus, CB1 receptor is present in scattered cells (34, 36). In the PVN, CB1

receptor mRNA coexpresses with CRH mRNA (45). In the thalamus, CB1 receptor is present in

the lateral habenula, reticular thalamic nucleus, and zona incerta. Midbrain dopaminergic

neurons are generally considered to lack CB1 receptor expression. However, recent

observations indicate that very low levels of CB1 receptor might be present in tyrosine

hydroxylase-expressing neurons in the ventral tegmental area (VTA) (46) and in

dopaminergic terminals in the striatum (47). In the hindbrain, apart from the molecular and

granular layers of cerebellum expressing high levels of the receptor, CB1 receptor is present

at low levels in some nuclei of the brain stem, such as the periaqueductal gray (34, 38).

Functional mapping by agonist-stimulated [ S]GTPγS binding using di�erent CB1 receptor

agonists revealed that cannabinoid activation of G proteins occurs with the same regional

distribution as the receptors (43, 48). However, in some regions, the ratio between the

estimated amount of CB1 receptor and G protein activation is not always constant, thus

indicating regional di�erences in receptor-coupling e�ciencies (43). This is important to

35
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consider, because sometimes the endocannabinoid system seems to in�uence functions

involving regions where the density of CB1 receptor is relatively low (e.g., modulation of food

intake in the hypothalamic area). Therefore, the activity of cannabinoids on CB1 receptor

cannot be predicted based solely on the relative receptor density, but other factors, such as

receptor coupling e�ciency, should be taken into account. For instance, by using conditional

mutagenesis in mice, the relatively low levels of CB1 receptor expression in cortical

pyramidal neurons were recently shown to play a central role in the endocannabinoid-

mediated protection against excitotoxic seizures (12). In conclusion, CB1 receptor is widely

expressed in the brain and is present at di�erent levels in di�erent neuronal subpopulation

and brain regions, and there is apparently no strict correlation between levels of expression

and receptor functionality.

2. CB1 receptor expression in the pituitary

Early studies showed a scattered presence of CB1 receptor in both lobes of the rodent

pituitary (33). Recent studies examined the distribution of CB1 receptor mRNA in the anterior

pituitary lobe in more detail. In 1999, the abundant CB1 receptor presence in the rat

adenohypophysis was associated with the ability of this gland to synthesize

endocannabinoids (49). CB1 receptor was also shown to be present in prolactin (PRL)- and

LH-secreting cells of the rat pituitary (50). CB1 receptor expression was also detected by

means of double-immuno�uorescence in the pituitary gland of Xenopus laevis, where the

receptor was found in lactotrophs, gonadotrophs, and thyrotrophs (51). The expression of

CB1 receptor in the human pituitary appears to be substantially di�erent from the

localization of the same receptor described in rodents and frogs (52). By using ISH and

double IHC, CB1 receptor was localized in the majority of corticotrophs and somatotrophs of

the normal human anterior lobe; only a small percentage of the PRL-secreting cells are

positive for CB1 receptor, whereas no immunoreactivity was found in LH-, FSH-, or TSH-

positive cells. The neural lobe is devoid of CB1 receptor immunoreactivity (52). Interestingly,

folliculo-stellate cells are also positive for CB1 receptor, although functional data have not

yet been associated with this expression (52). CB1 receptor was also found in human pituitary

adenomas, such as ACTH-producing adenomas (which give rise to Cushing’s syndrome),

GH-producing tumors (leading to acromegaly), and in prolactinomas, whereas no CB1

receptor staining was found in so-called nonfunctioning pituitary adenomas, tumors

expressing LH and/or FSH, and/or α-subunit being devoid of any hormonal staining (52).

These data were con�rmed by a study in which cDNA microarray analysis was used to

compare gene expression pattern in pituitary adenomas vs. normal pituitary (53). Among

other genes di�erentially expressed, ACTH- and GH-producing tumors express higher levels

of CB1 receptor compared with the normal pituitary (53). Notably, the human normal
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anterior pituitary gland and pituitary tumors were shown to be capable of synthesizing

endocannabinoids (52).

In rodents, CB1 receptor expression in the pituitary is under the in�uence of circulating sex

hormones, as demonstrated by the ability of androgens and estrogens to up- and down-

regulate CB1 receptor, respectively (49). In agreement with these �ndings, decreased CB1

receptor expression has been found in estrogen-induced pituitary hyperplasia in rats (49).

Accordingly, in rats, the male pituitary displays higher levels of CB1 receptor mRNA than the

female one (49). In contrast, the human pituitary does not show this gender di�erence (52).

Exogenous cannabinoids can modulate the expression of CB1 receptor in the pituitary. After a

transient down-regulation of the receptor (�rst 1–3 d), chronic administration of CB1

receptor agonists is able to produce a consistent increase of CB1 receptor expression in the

anterior pituitary lobe (after 14 d) (54). This �nding seems to be in contrast with the level in

the ventromedial hypothalamic nucleus, where CB1 receptor mRNA was down-regulated by

chronic CB1 receptor agonist treatment (54).

3. CB1 receptor expression in the peripheral organs

a. CB1 receptor in the thyroid gland

CB1 receptor expression during the late embryological stages of the rat thyroid was found to

be very high (55), whereas lower but still detectable levels of CB1 receptor mRNA and protein

were present in the adult rat gland distributed in both follicular and parafollicular cells as

demonstrated by IHC (56).

b. CB1 receptor in the adrenal gland

A faint signal for CB1 receptor was detected in the human adrenal glands by quantitative RT-

PCR method (57). However, ISH or IHC studies are needed to clearly localize CB1 receptor in

the di�erent areas that make up the gland.

c. CB1 receptor in the peripheral organs involved in metabolic control

In 2003, two independent groups found the presence of CB1 receptor in adipocytes of mice

and humans (58–60). In both species, this expression is more evident in mature adipocytes

than in preadipocytes (59, 60), indicating that the full cellular machinery of the fat cell is

needed to exert cannabinoid action. Little is known about CB1 receptor expression in the

muscle. Recently, the CB1 receptor antagonist SR141716 was shown to directly a�ect glucose

uptake in the isolated soleus muscle of genetically obese mice (61). Consistently, CB1 receptor



6/23/2018 Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance | Endocrine Reviews | Oxford Academic

https://academic.oup.com/edrv/article/27/1/73/2355171 9/93

Skip to Main Content

is present in the murine soleus muscle as shown by RT-PCR (Fig. 1). Additional investigations

are needed to fully understand the importance of this expression site.

Recently, an elegant study by Kunos’ group (62) localized CB1 receptor in the mouse liver.

CB1 receptor mRNA was detected by ISH with strong labeling in Kup�er cells, whereas lower

levels of expression were found in hepatocytes and endothelial cells. Interestingly, CB1

receptor expression was more prominent in hepatocytes surrounding the central veins.

Human hepatic stellate cells also have been shown to express CB1 receptor (63).

At present, nothing is known about CB1 receptor in the exocrine and endocrine cells of the

pancreas.

d. CB1 in the gastrointestinal tract

The endocannabinoid system is present in the gastrointestinal tract where it modulates

several functions, including motility, in�ammation, and secretion (64). Interestingly, CB1

receptor is expressed in vagal nerve terminals innervating the gastrointestinal tract (64),

which are involved in gut-brain signaling, modulating food intake. They express

cholecystokinin (CCK) receptor type 1 whose activation is known to play a very important role

FIG. 1.

View large Download slide

Expression of CB1 mRNA in soleus muscle of mice. RT-PCR was performed using 1 μg of total RNA extracted by
phenol-chloroform method from soleus muscle as shown in Ref.58 . β-actin and CB1 mRNA expression. Lane 1,
Wild-type 12-wk-old mice undergoing standard diet; lane 2, CB1  littermate mice undergoing standard diet;
lane 3, C56BL/6 mice used as control undergoing standard diet; lane 4, C56BL/6 under high-fat diet for 2
months; lane +, positive control (hypothalamus); and lane W, negative control (PCR blank). Note the increased
CB1 signal in muscle derived from mice on high-fat diet in comparison to the muscle derived from mice on
standard diet.

−/−

https://academic.oup.com/view-large/figure/51314803/zef0020626090001.jpeg
https://oup.silverchair-cdn.com/DownloadFile/DownloadImage.aspx?image=https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/edrv/27/1/10.1210_er.2005-0009/3/zef0020626090001.jpeg?Expires=2147483647&Signature=K0n0CrYXVz2ZrSotpJiy3OzsrcYRTsIvK67akNBa75IEPnxb4Uz2oONq~PhRqqxtJNb2zqOuaOZC9-jeO93Wa~6Uhx8IDLQ6uwqXTN~cSB8xr8nJLhNlyWabWXNbNjYRNpuwYPL8Uxlkfb7wMUXpZEr9eH4YIZ303ES7JgYTrK9TayeajuX-H-W~JbKfzf-MmSrfM-oB5tqmcnt3WguLnmkUqnk04ZleNE5GwvEMqYeKxaHEaR-wdcJ7DDsr9Cw0kHE2QtUIvS2RNS8CEoLadx5311Z~5W2Tz~58fK64W430KlU-Hw5Qd2d8HCnamG8UDbpzX46aKwsmO03oUwnnpA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA&sec=51314803&ar=2355171&xsltPath=~/UI/app/XSLT&imagename=
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in mediating satiety. Vagal neurons are known to express receptors for leptin and orexin-A

(65, 66), whose ligands activate and reduce the anorectic e�ect of CCK on vagal a�erent

nerve discharge, respectively. Importantly, CB1 receptor is also present in these neurons, and

its expression is decreased after feeding and enhanced in fasting conditions (67). CCK was

shown to mediate the e�ect of food in down-regulating vagal CB1 receptor expression (67).

CB1 receptor was also found in the fundus of the stomach, but the cellular localization is not

yet known. However, a single SR141716 administration is able to reduce the levels of ghrelin

(68), whose production takes place in the gastric endocrine (X-) cells (69).

e. CB1 receptor in the reproductive organs

CB1 receptor has been known for a long time to be expressed in the testis (57, 70). In

particular, it seems to be localized in Leydig cells (71), whereas Sertoli cells that are able to

inactivate arachidonoyl ethanolamide (AEA) do not express CB1 receptor (72). Sea urchin

sperms, an ideal model for studying fertilization processes, express cannabinoid binding

sites (73). Human sperms possess functional binding sites for cannabinoids (74). Very

recently, Rossato et al. (75) elegantly showed that CB1 receptor is present in the head and the

middle piece of human sperm.

CB1 receptor is also expressed in the ovary (57), probably located in the granulosa cell layer

where Δ -THC was shown to inhibit cAMP accumulation (76). CB1 receptor is present in the

mouse uterus (77) and in the human myometrium (78), and is associated with the relaxant

e�ect of cannabinoid receptor agonists (78). Importantly, CB1 receptor is coexpressed with

β-adrenergic receptors in the oviduct muscularis, where the endocannabinoid system

regulates motility and embryo transport (79). Both CB1 and CB2 receptors are located in the

mouse preimplantation embryos (80) as well as in all layers of human placenta; particularly

high levels are detectable in the amniotic epithelium and in the maternal decidua layer (81).

4. Signal transduction of CB1 receptor

The signal transduction of cannabinoid receptors has been extensively described in many

excellent reviews (3, 4, 25, 82–85), and its detailed description is beyond the scope of the

present article. It is important to note, however, that CB1 receptor activation might lead to

the stimulation of di�erent intracellular pathways, depending on the cell type involved and

the experimental conditions. For instance, CB1 receptor, which normally inhibits adenylate

cyclase, can also stimulate the cAMP pathway in particular conditions (86, 87). Moreover,

recent results suggest the possibility of functional interactions of CB1 receptors with other

receptors, for instance, with type 1 orexin receptors (88), 5HT2 serotonin receptors (89), and

dopamine receptor type 2 (D2) (87). The possibility that such interactions depend on

heterooligomerization processes might represent a very interesting novel aspect (87), which

9
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will expand the view of the pharmacology and physiology of the endocannabinoid system.

These considerations should also be borne in mind to understand the roles of the

endocannabinoid system in regulating the endocrine systems. Figure 2 summarizes the best-

described intracellular e�ects of CB1 receptor stimulation, including the regulation of the

cAMP cascade, modulation of ion channels, stimulation of kinase pathways, and induction of

immediate early genes.

B. Endocannabinoids

1. Structure

In 1992, the �rst endogenous cannabinoid, AEA, also called anandamide, was identi�ed (8).

Subsequently, a second endocannabinoid, 2-arachidonoyl glycerol (2-AG), was discovered

(5, 9). Both these compounds are derivatives of arachidonic acid and are able to bind to CB1

and CB2 receptors, although with di�erences in a�nities and activation e�cacies (90).

During the last few years, several other bioactive lipid mediators have been described; they

appear to act, at least in part, through CB1 and/or CB2 receptors and confer speci�c

pharmacological e�ects in vivo (91). Speci�cally, these compounds are 2-arachidonoyl-

glyceryl-ether (noladin ether) (92), O-arachidonoyl-ethanolamine (virodhamine) (93), N-

arachidonoyl-dopamine (94), and possibly oleamide (95). However, the endogenous

function in physiological processes for all these latter compounds have not yet been

established in detail and need further investigation (4). Furthermore, there are several

additional putative lipid mediators that might have cannabimimetic actions, but whose exact

mechanism of action is not known in detail (91). In some cases, their cannabimimetic e�ects

may be partially attributed to interference with the endocannabinoid-inactivating enzymes

(91). These lipids might, therefore, be able to enhance the activity of cannabinoid receptors

by increasing the concentration of the endocannabinoids such as AEA and/or 2-AG.

2. Synthesis, release, uptake, and degradation of endocannabinoids: on
demand activation of the endocannabinoid system

Endocannabinoids are very lipophilic and thus cannot be stored in vesicles like other

neurotransmitters. Consequently, the regulation of endocannabinoid signaling is tightly

controlled by their synthesis, release, uptake, and degradation (3). Several di�erent stimuli,

including membrane depolarization and increased intracellular Ca  and/or receptor

stimulation, can activate complex enzymatic machineries, which lead to the cleavage of

membrane phospholipids and eventually to the synthesis of endocannabinoids. Importantly,

di�erent enzymes are involved in the synthesis of distinct endocannabinoids, indicating an

2+
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independent involvement of endocannabinoids in di�erent conditions. After synthesis,

endocannabinoids can activate cannabinoid receptors, either after previous release into the

extracellular space or directly moving within the cell membrane. Endocannabinoid signaling

is limited by very e�cient degradation processes, involving facilitated uptake from the

extracellular space into the cell and enzymatic catabolism mediated by speci�c intracellular

enzymes. The molecular nature of the carrier protein(s) involved in endocannabinoid uptake

has not yet been elucidated. However, the enzymes able to degrade endocannabinoids are

quite well characterized. They are fatty acid amide hydrolase (FAAH) for anandamide and

related compounds (96) and monoglycerol lipase for 2-AG (97), although other enzymes

might be partially involved in the degradation of this last compound (98). A detailed

description of the biochemical mechanisms leading to the synthesis, release, uptake, and

degradation of endocannabinoids is beyond the scope of the present article, and we refer the

reader to several excellent and exhaustive reviews recently published on the subject (3, 4, 30,

82, 99–101). An interesting aspect of endocannabinoid activity is the rapid induction of their

synthesis, receptor activation, and degradation (3, 102). The endocannabinoid system has

thus been suggested to act on demand, with a tightly regulated spatial and temporal

selectivity. The system exerts its modulatory actions only when and where it is needed. This

fact poses an important distinction between the physiological functions of the

endocannabinoid system (selective in time and space) and the pharmacological actions of

exogenous cannabinoid receptor agonists, which lack such selectivity. In the context of

endocrine regulation, it is interesting to mention here that hormonal stimulation with

glucocorticoids can lead to the synthesis of endocannabinoids in the hypothalamus through

rapid nongenomic mechanisms (103). It was also recently shown that phospholipase Cβ

represents an intracellular coincidence detector of membrane depolarization and receptor

stimulation leading to the synthesis and, possibly, the release of endocannabinoids in the

hippocampus (104). These data reveal a novel mechanism for activation of the

endocannabinoid system, which could also be involved in the regulation of endocrine

systems. Concerning degradation of endocannabinoids, which represents an important

regulatory aspect of the activity of the endocannabinoid system, it should also be mentioned

that a recent study investigated whether endocytic processes are involved in the uptake of

endocannabinoids and found that about half of the AEA uptake occurs via a caveola/lipid

raft-related process (105).

3. Endocannabinoid-mediated inter- and intracellular signaling

Several mechanisms underlying endocannabinoid-mediated signaling have been reported. 1)

In the central nervous system (CNS), endocannabinoids can act as neurotransmitters

transferring information from one neuron to the next. Here, postsynaptically released

endocannabinoids travel to the presynaptic site where they activate CB1 receptors. They thus
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mediate a retrograde signal (30, 106, 107). The overall e�ect is a decrease in the release of

neurotransmitters such as glutamate and GABA. This phenomenon is present in synaptic

connections of many brain regions, thus representing an important modulatory mechanism

of neuronal transmission. With respect to the aims of the present review, it is noteworthy

that this function has also been shown in the VTA (108, 109), where the modulation of reward

properties of food presumably occur, and in the hypothalamus, where endocannabinoids and

CB1 receptor mediate the acute glucocorticoid-dependent depression of glutamatergic

transmission (103). 2) Endocannabinoids can mediate an autocrine signaling that induces a

self-inhibitory e�ect on neuronal activity. This was shown for GABAergic neurons in the

cerebral cortex (110). 3) Endocannabinoids may act in a paracrine or autocrine manner, not

involving synaptic transmission. This is presumably applicable for glial cells (111) and in

nonneuronal cells such as the adipocytes and the hepatocytes. 4) Because endocannabinoids

and CB1 receptor are also present within the cell, it cannot be excluded that

endocannabinoids may act as intracellular signaling molecules. Importantly, AEA and 2-AG

do not appear as interchangeable mediators. For instance, electrophysiological and

biochemical evidence shows that 2-AG is mostly involved in retrograde control of synaptic

activity in the VTA (109), or the hippocampus (112), whereas AEA appears to play an

important role in other regions, such as the basal ganglia (113) and the amygdala (114).

In summary, endocannabinoids appear to be very versatile signaling mediators, involved in a

broad spectrum of physiological regulatory processes.

C. Cannabinoid agonists

1. Plant-derived cannabinoids

The isolation and characterization of the psychoactive component of C. sativa represented a

challenging research task. This was due to the fact that the extracts from Cannabis plants

contain more than 60 di�erent, chemically closely related terpeno-phenols that are di�cult

to separate and purify. This prevented the isolation of pure crystals for determination of the

structure. The breakthrough was achieved using improved column chromatography. As

mentioned above, in the early 1960s, Gaoni and Mechoulam (2) succeeded in isolating and

pharmacologically characterizing various plant-derived cannabinoids. In hemp, the major

psychoactive compound is represented by Δ -THC, whereas Δ -tetrahydrocannabinol is only

present in very low amounts. The majority of terpeno-phenols in hemp lack psychoactivity.

They include cannabidiol, cannabinol, cannabigerol, and cannabichromene. Although

psychoactive cannabinoids bind to and activate both CB1 and CB2 cannabinoid receptors,

nonpsychoactive cannabinoids are also able to exert various pharmacological e�ects in vivo,

although only at rather high concentrations and not by activation of CB1 or CB2 receptors.

9 8
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Cannabidiol has recently gained additional attention due to its anticonvulsive,

neuroprotective, and antiemetic activities (115–117). The underlying mechanisms of actions

of this plant-derived cannabinoid have not yet been elucidated.

2. Classification of exogenous and endogenous cannabinoids

Based on structural features, plant-derived and synthetic cannabinoids are divided into

di�erent classes (25). In brief: 1) For “classic” cannabinoids, the main psychoactive

constituent of Cannabis, Δ -THC, encompasses tricyclic dibenzopyran compounds and serves

as the lead structure. Δ -THC is a partial agonist of CB1 and CB2 receptors. The synthetic

derivative HU210 shows the highest potency among the known CB1 receptor agonists and

also activates CB2 receptors (25). HU308, another synthetic Δ -THC derivative, was found to

be a selective CB2 receptor agonist (118). 2) So-called “nonclassic” cannabinoids are

synthetic Δ -THC derivatives that lack the dihydropyran ring. The most famous one is

represented by CP-55,940, a potent and complete agonist of CB1 and CB2 receptors,

synthesized by P�zer. It was originally pivotal for the molecular identi�cation of CB1

receptor (25). 3) Finally, aminoalkylindoles, represented by R-(+)-WIN-55,212-2, are

compounds structurally unrelated to Δ -THC but with strong cannabimimetic activities (25).

They bind to both CB1 and CB2 receptors (25).

All endocannabinoids are structurally rather distinct from plant-derived and most synthetic

cannabinoids. Prototypically, they belong to the eicosanoids, fatty acid derivatives

containing a chain with 20 carbon atoms. The synthetic AEA derivative arachidonyl-2′-

chloroethylamide represents a selective CB1 receptor agonist with very low activity on CB2

receptor (25).

The quest for speci�c ligands for either of the cannabinoid receptors represents an important

research topic. In particular, if CB2 receptor is targeted with a speci�c agonist, with no

activity on CB1 receptor, the psychotropic side e�ects of the agonist are avoided. This may be

very relevant for alleviating peripheral pain where CB2 receptor is involved (26, 119). Further

important progress may also be achieved by the development of cannabinoid receptor

agonists that do not pass the blood-brain barrier. Such compounds would focus on the

receptors in the periphery and would thus prevent undesirable side e�ects originating from

the CNS.

Although not acting as ligands of cannabinoid receptors, inhibitors of cellular uptake of

endocannabinoids, such as AM404 (120), VDM11 (121), and UCM707 (122) provide another

interesting class of drugs interfering with the endocannabinoid system. Given the on demand

nature of the synthesis and release of endocannabinoids, these drugs make it possible to

9
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induce a targeted increase in the concentration of endocannabinoids, likely reducing some of

the undesirable side e�ects observed by using receptor agonists.

D. Cannabinoid type 1 receptor antagonists

Pharmacological investigations have placed emphasis on the generation of substances acting

as speci�c antagonists of cannabinoid receptors. Among the increasing number of

compounds sharing CB1 receptor antagonistic properties (123, 124), the compounds most

characterized are SR141716 (125), SR14778 (126), AM251 (124), AM281 (127), LY320135 (128),

and SLV319 (129). The CB1 receptor antagonists known so far are diarylpyrazoles, or

aminoalkylindoles, or triazole derivatives. Diarylpyrazoles include SR141716, which is the

�rst selective CB1 receptor antagonist reported. It was discovered approximately a decade

ago, and it has been the compound most studied so far. Pharmacologically, SR141716 shows a

Ki value of binding to rat brain synaptosome of 1.98 ± 0.36 nM (125). Few data on the

metabolism and pharmacokinetics of SR141716 are available in humans (130). The dose of

SR141716 that produced a 50% antagonism of agonist e�ect in the mouse was 0.23 mg/kg,

and a dose of 3 mg/kg produces a long-lasting (18 h) blockade of the e�ect of WIN-55212–3

(131).

There are di�erent possible mechanisms by which CB1 receptor antagonists produce their

e�ects on the CB1 receptor (132). The ligands can be competitive antagonists of CB1 receptor

activation by endogenously released endocannabinoids, or they can act as inverse agonists

and modulating constitutive CB1 receptor activity by shifting it from an active “on” to an

inactive “o�” state (133). They may also act by CB1 receptor independent mechanisms (132).

These mechanisms are not mutually exclusive.

III. Exogenous and Endogenous Cannabinoids and Their Role
in Endocrine Regulation

It has been known for a long time that exogenous cannabinoids are able to a�ect secretion of

pituitary hormones, thus having a strong e�ect on peripheral target organ functions.

Notably, in 1972 the �rst report of an induction of gynecomastia due to marijuana

consumption led to a dramatic acceleration of studies on this topic (134). The hypothalamus

is generally considered as the main site of cannabinoid action on neuroendocrine functions.

This view is elegantly supported by a recent publication showing that endocannabinoids act

as retrograde messengers activating CB1 receptors expressed at presynaptic glutamatergic

terminals in the hypothalamus (103). The subsequent activation of the CB1 receptor signaling
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cascade leads to the inhibition of the release of the excitatory neurotransmitter glutamate

onto the neuroendocrine cells of the PVN and the supraoptic nucleus (103). This leads to a

general suppressive e�ect on neuroendocrine cells and a �nal inhibitory e�ect on

neuroendocrine function.

However, it was recently proposed that the endocannabinoid system might control hormonal

balance also through a direct e�ect at the level of the peripheral target organs. An overview of

the cannabinoid actions on endocrine axes is given in Table 1.

TABLE 1.

Overview of the cannabinoid action by CB1 activation in the various endocrine axes

Endocrine axis  Cannabinoid actions  Ref. 

HPA axis  Acute stimulation of CRH by CB1 agonists  135, 136, 137,
138, 139, 140 

  Stimulation of the HPA by CB1 antagonists inducing a
potentiation of stress-induced rise of the axis 

143, 144, 146–
148 

  Direct stimulation at the level of ACTH-producing cells
(controversial data) 

52, 135, 142 

  No studies on the direct e�ect at adrenal gland   

Hypothalamus-
pituitary-GH axis 

Inhibitory action through somatostatin activation  150–154 

Hypothalamus-
pituitary-thyroid axis 

Inhibition of T3 and T4 secretion by direct action at level of
the thyroid 

56 

Hypothalamus-PRL
axis 

Action at the level of PRL-producing cells  52, 170, 171 

  Inhibitory action through dopamine activation  153, 161, 162,
168, 169 

Hypothalamus-
pituitary-gonadal axis 

No e�ect on FSH  172 

  Inhibition of LH pulse through a multiple action on neuronal
systems regulating GnRH secretion 

54, 165, 172–
176, 183–185 

  Inhibition of testosterone and ovarian androgens  76, 202–204 

  Inhibition of achrosome reaction  75, 208, 209 
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Endocrine axis  Cannabinoid actions  Ref. 

  Inhibition of sperm fertilization and capacity  75, 210 

View Large

A. Cannabinoids and the hypothalamic-pituitary-adrenal axis

Stimulation of the hypothalamic-pituitary-adrenal (HPA) axis is a crucial neuroendocrine

response to stress. Psychological or physiological stressors are known to induce CRH

production in the PVN of the hypothalamus, eventually leading to a release of this

hypothalamic peptide onto the anterior pituitary gland. In turn, this leads to increased

circulating levels of ACTH and, �nally, to an increase of corticosteroids secreted by the

adrenal gland.

Until a few years ago, the impact of the cannabinoids on the HPA axis was considered as an

exception. Whereas the commonly accepted view attributes the cannabinoid system with a

general inhibitory role on neuroendocrine functions, it was suggested that cannabinoids are,

on the contrary, able to stimulate the HPA axis. In fact, many studies in animals point to a

CB1 receptor-dependent (135) increase of circulating ACTH and glucocorticoid levels after

pharmacological administration of plant-derived (136), synthetic (137, 138), or endogenous

cannabinoid agonists (139, 140). In agreement with this, a simultaneous elevation of CRH in

the PVN and of proopiomelanocortin in the anterior pituitary after chronic treatment (18 d)

with the CB1 receptor agonist CP-55,940 was observed in rats (138). Cannabinoids were

proposed to act exclusively at hypothalamic sites after the �nding that Δ -THC did not induce

hyperactivation of the HPA axis in hypophysectomized rats (141), and that Δ -THC or WIN

55,212-2 was unable to stimulate ACTH release from basal and CRH-stimulated dispersed

pituitary cells or isolated pituitary slices, respectively (135, 142).

However, this concept was recently challenged by several reports showing a di�erent

function of endocannabinoids on the HPA axis. In fact, some studies showed that

administration of the CB1 receptor antagonist SR141716 in rats is able to induce ACTH and

corticosterone release and to produce anxiety-like behavior (143, 144). It is well known that

this behavior represents part of the physiological response to stressful stimuli and is, indeed,

associated with the hyperactivation of the HPA axis (145). Moreover, compounds able to

increase endocannabinoid tone by inhibiting FAAH activity were recently proposed as

treatment for anxiety-related disorders because they were shown to reduce restraint-

induced corticosterone release (146) and to diminish the anxiety-like response in di�erent

tasks (147). In addition, mice lacking CB1 receptor (CB1 ) are resistant to some actions of

anxiolytic drugs (148). In support of the existence of a close interaction between the
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endocannabinoid system and CRH, it is important to mention that CB1 receptor and CRH

mRNAs are coexpressed in PVN neurons, and that CB1  mice present increased CRH mRNA

levels in this region, indicative of a possible basal alteration of the HPA axis activity due to

the disruption of CB1 receptor signaling (58). Therefore, a novel view seems to attribute the

endocannabinoid system with a critical inhibitory action on HPA functions. A recent elegant

report by Patel et al. (146) shed light on this issue. The authors con�rmed previous studies

showing that systemic treatment with SR141716 is able to increase serum corticosterone

concentrations in basal conditions; more importantly, they found that pretreatment of mice

with the same CB1 receptor antagonist before acute restraint stress provokes a potentiation

of the restraint-induced rise in serum corticosterone concentrations. In addition,

endogenous cannabinoids and, in particular 2-AG, were found to be decreased after a short

period of restraint stress, whereas a condition of prolonged stress was associated with an

increase in 2-AG concentrations (146). Accordingly, they concluded that endocannabinoid

signaling negatively modulates the stress-induced activation of the HPA axis, con�rming the

notion that a pharmacological increase in endocannabinoid signaling activity may constitute

a novel approach to the treatment of anxiety-related disorders (146). These �ndings

reinforce the general concept that the pharmacological administration of cannabinoids may

lead to a completely di�erent action when compared with the physiological functions of the

endocannabinoid system as shown by experiments using CB1 receptor antagonist or CB1

mice.

Besides the hypothalamus, peripheral sites of action, such as pituitary and adrenal glands,

could participate in the endocannabinoid modulation of the HPA functions. In cultured

human ACTH-producing tumors, WIN 55,212-2 was found to be ine�ective in in�uencing

basal ACTH secretion. However, the simultaneous application of WIN 55,212-2 and CRH

caused a synergistic action, which was abolished by SR141716, indicating that the activation

of CB1 receptor might play a role during CRH-induced activation of ACTH-secreting cells

(52). Therefore, in the corticotroph cells, an endocannabinoid tone could interfere with the

normal regulation of the adenylate cyclase activity and, thus, with the secretion of ACTH. As

mentioned above, a pending question regards CB1 receptor expression and endocannabinoid

production at the level of cortical adrenal gland and their putative role in the secretive

function of this gland. Further e�orts are needed to solve this important issue. Interestingly,

our recent unpublished studies indicate that CB1  have higher plasma levels of

corticosterone but normal levels of ACTH, suggesting a putative regulation of adrenal activity

by the endocannabinoid system (our unpublished results).

B. The role of cannabinoids in GH secretion

−/−
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GH secretion is mainly stimulated by hypothalamic GHRH and by the recently discovered

peptide ghrelin (69), whereas somatostatin is the most important negative regulator. Other

neurotransmitters such as serotonin, dopamine, and catecholamines can a�ect GH secretion

through modulation of GHRH release. Few data are available concerning the e�ects of

marijuana on GH in humans. Four days of marijuana consumption were shown to inhibit the

GH-counteracting response provoked by insulin-induced hypoglycemia (149). Δ -THC and

synthetic cannabinoids were shown to inhibit GH secretion in rodents (150–152). However,

compared with other hormones, it is still questionable whether cannabinoids are able to

decrease GH secretion acting exclusively at the hypothalamic level or whether they also

directly in�uence GH pituitary output. Rettori et al. (153) observed that only

intracerebroventricular Δ -THC administration was able to reduce GH secretion, whereas no

e�ect was observed in cultured rat pituitary cells. Interestingly, by incubating fragments of

median eminence with Δ -THC, a signi�cant stimulation of basal somatostatin was found

(154); this �nding makes it possible to speculate that the inhibitory action of Δ -THC on GH

secretion could be mediated by somatostatinergic activation (154). Recent data point to a

functional cross-talk between CB1 receptor and the ghrelinergic system. In fact, hyperphagia

associated with intracerebroventricular administration of ghrelin is blocked by pretreating

the rats with SR141716 (155). Unfortunately, no data have been provided concerning GH

release in this experimental setting. Altogether, these data seem to indicate that the e�ect of

exogenous cannabinoids on GH secretion is located at a suprapituitary level. However, the

cannabinoid agonist WIN 55,212-2 inhibited GH secretion in human GH-producing

adenomas in culture, and this e�ect was reversed by the speci�c CB1 receptor antagonist

SR141716, suggesting that cannabinoids are able to directly in�uence basal GH secretion

through CB1 receptor activation, at least in tumoral tissues (52). No data are available on the

physiological modulation made by the endocannabinoid system on GH secretion.

C. Cannabinoids and the hypothalamic-pituitary-thyroid axis

Pioneer studies showed that marijuana is able to decrease TSH and thyroid hormones in rats

(156, 157) and iodine accumulation in the isolated rat thyroid (158). The lack of changes in

TRH secretion in the hypothalamus led the authors to conclude that the cannabinoid e�ect

could be attributed to a direct action at the level of the pituitary or the thyroid gland (157).

Recently, Porcella et al. (56) found a CB1 receptor-dependent decrease (30%) in both free T3

and free T4 4 h after the administration of the synthetic cannabinoid agonist WIN 55,212-2

in rats. TSH levels were una�ected, indicating that the thyroid gland itself may be the direct

target of cannabinoid action (56). On the other hand, the lack of TSH changes may also be

explained by an action of cannabinoids on the levels of thyroid binding protein or on the

metabolism of thyroid hormones. More studies are needed to verify these hypotheses.
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Concerning the physiological roles of the endocannabinoid system, an inhibitory action on

TRH neurons through a glucocorticoid-induced inhibition of glutamate transmission was

recently proposed (103).

D. The role of cannabinoids in prolactin secretion

There is no general consensus regarding the e�ect of exogenous cannabinoids on PRL

secretion. Early studies in rodents and primates favor an inhibitory role of cannabinoids on

PRL release (153, 159–162) through a CB1 receptor-mediated e�ect (163). Conversely, some

reports showed that cannabinoids may also have either a stimulatory e�ect (164, 165) or no

e�ect (166) on PRL release. As often occurs in the �eld of cannabinoids, this controversy may

be largely due to the di�erent experimental settings used. The con�icting data may also

originate from the biphasic pro�le of PRL observed after Δ -THC administration, with an

initial increase followed by a marked decrease after time (167). In the same study, the

antagonist SR141716 was only able to block the inhibitory e�ect, whereas no e�ect was seen

toward the cannabinoid stimulatory e�ect on PRL (167). There is a general agreement that

cannabinoid activation of the tuberoinfundibolar dopaminergic neurons controlling PRL

secretion is the main mechanism responsible for the inhibition of this pituitary hormone

(168, 169). When Δ -THC was chronically administered to ovariectomized or

hypophysectomized female rats or to dispersed pituitary cells in culture, no e�ect was seen

on PRL release, suggesting that the inhibitory cannabinoid e�ect targets the CNS directly

(161). Similar conclusions were drawn from similar models by other authors (153). Recently,

exogenous AEA was shown to inhibit PRL release from male rats by acting on the CB1

receptor on dopaminergic neurons located in the medial basal hypothalamus (162). However,

like other hormones, it has also been hypothesized that cannabinoids may also a�ect PRL

secretion directly in the pituitary. Indeed, Δ -THC was able to prevent estrogen-induced PRL

secretion in vivo (170) and in vitro (170). The direct e�ect of cannabinoids at pituitary level

was also con�rmed by the demonstration that WIN 55,212-2 does not a�ect basal secretion,

but inhibits vasoactive intestinal peptide- and TRH-stimulated PRL release in tumoral

pituitary GH4C1 cells (171). WIN 55,212-2 was also able to inhibit PRL secretion in a single

case of prolactinoma in culture (52). In conclusion, we can assume that the biphasic action on

PRL secretion of exogenous cannabinoids is mediated by an initial activation of CB1 receptor

located at the level of the pituitary and followed by a persistent inhibitory action mediated by

the activation of the release of dopamine from hypothalamic structures.

E. The role of cannabinoids in modulation of the hypothalamic-
pituitary-gonadal axis and fertility
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1. In females

While FSH secretion seems to be una�ected by administration of exogenous or endogenous

cannabinoids (172), several pieces of evidence attribute cannabinoids with a strong ability to

down-regulate blood LH levels (49, 165, 172, 173). This e�ect is due to a complete

suppression of the secretory pulse of LH (174, 175). In monkeys, chronic administration (18

d) of Δ -THC was shown to block estrogen and LH surges and the consequent elevation in

progesterone (176). However, the same animals developed tolerance to the antireproductive

e�ect of the drug after a few months of treatment (177). In women smoking a single

marijuana cigarette with a �xed content of Δ -THC, a decrease of LH was observed during the

luteal phase, whereas no e�ect was seen on the same hormone in the follicular phase and in

the postmenopausal state (178, 179). The sustained use of marijuana (at least four times per

week) may cause alterations of the menstrual cycle, such as oligomenorrea; however, no

changes were shown in hormonal parameters in a group of 13 pregnant women who

continued to smoke marijuana during pregnancy (180). An excess of cannabinoids may also

impair regular ovulation, not only acting at the hypothalamic level but also directly a�ecting

ovarian granulosa layers (76).

A general consensus attributes the LH-inhibitory action of cannabinoids to a suprapituitary

site of action. In fact, administration of gonadotropins or GnRH was able to induce ovulation

or LH release, respectively, even in the presence of high levels of Δ -THC (174, 175). However,

a report showed that cannabinoids are not able to block the basal GnRH secretion from

hypothalami in vitro (165). This last �nding suggests that cannabinoids indirectly modify

GnRH secretion by negatively modulating the activity of neurotransmitters known to

facilitate GnRH secretion, such as norepinephrine (165) and glutamate (181), and by

stimulating those modulators known to down-regulate GnRH secretion, such as dopamine

(182), GABA (183), opioids (184), and CRH (185). The stimulatory e�ect of cannabinoids on

dopaminergic neurons is well known (186), however their impact on the brain dopaminergic

activity varies as a function of the gonadal status, as demonstrated by several lines of

evidence (187). In particular, it has been shown that steroid hormone receptors mediate the

well known Δ -THC-facilitation on sexual behavior (188) exerted, as recently shown, by CB1

receptor activation (189). Moreover, in the same study Mani et al. (189) reported that an

interaction between progesterone and dopamine receptor type 1 (D1) is required for Δ -THC-

facilitated sexual receptivity in female rats.

However, although pharmacological studies have helped to explain the relevant role of the

cannabinoids in modulation of the hypothalamus-pituitary-gonadal axis and sexual

behavior, it is not yet known how, where, and under what circumstances the

endocannabinoids are produced to do so. The recent �ndings of �uctuation during the
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ovarian cycle of AEA in both hypothalamus and pituitary (49) allowed some authors to

speculate that endocannabinoids may in�uence hormonal secretion and sexual behavior by

directly targeting the CB1 receptor (190). Furthermore, an important production of

endocannabinoids was found in the ovary, in particular at the time of ovulation, making it

possible to hypothesize that the endocannabinoids may help to regulate follicular maturation

and development of the ovary (74).

The uterus contains the highest level of AEA detected so far in mammalian tissues, and it is

the only tissue where AEA is the main component (up to 95%) of N-acylethanolamides (191).

This observation, together with the expression of CB1 receptors in preimplantation embryos

(80), recently prompted strong e�orts focused on the role of the endocannabinoid system

during early pregnancy and in the modulation of embryo-uterine interactions. High levels of

AEA adversely a�ect embryo development and implantation through CB1 receptor activation

(192), whereas low levels of AEA promote embryonic growth and di�erentiation (193, 194,

195). It is therefore evident that the degradation of AEA by FAAH is a crucial enzymatic

checkpoint in the control of reproduction. Notably, a strong inverse correlation was

described between levels of FAAH activity in maternal peripheral blood mononuclear cells

and spontaneous miscarriage in women (196). In addition, FAAH activity is lower, and

consequently AEA higher, in patients who fail to achieve pregnancy during in vitro

fertilization embryo transfer in comparison to patients who become pregnant (197).

Furthermore, AEA levels in the mouse uterus are inversely related to uterine receptivity for

implantation, being higher with uterine refractoriness to blastocyst implantation (191, 198,

199) and lower at implantation sites (194). We can therefore conclude that high levels of

maternal AEA are detrimental to early placental and fetal development. In favor of this

hypothesis, it was recently shown that high levels of FAAH are present in the

cytotrophoblast, presumably to prevent the transfer of AEA from maternal blood to the

embryo (200). A series of studies by Maccarrone et al. (72, 195) showed that the activity of

FAAH is under the strict regulation of several hormones, such as progesterone, leptin, and

FSH, very well-known modulators of fertility. Importantly, by using genetic or

pharmacological blockade of the CB1 receptor, it was very recently demonstrated that an

impairment in endocannabinoid signaling leads to a retention of a large number of embryos

in the mouse oviduct, leading to pregnancy failure. This is due to a profound impairment of a

coordinated oviductal smooth muscle contraction and relaxation (79). The authors propose

that their �ndings may have strong implications for ectopic pregnancy in women because

one major cause of tubal pregnancy is embryo retention in the fallopian tube (79).

Consistently, both endogenous and exogenous cannabinoids exert a CB1 receptor-mediated

relaxant e�ect, not only on the oviductal smooth muscle but also on the human pregnant

myometrium, highlighting a possible role of endocannabinoids during human parturition

and pregnancy (78). In fact, pregnancy also seems to be tightly controlled by the
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endocannabinoid system (200). In summary, all the steps starting with fertilization up to

pregnancy seem to be tightly modulated by endocannabinoids, reinforcing the concept that

the endocannabinoid system should be considered not only as a central neuromodulator but

also as a physiological actor in a wider scenario.

2. In males

Cannabinoids also were shown to decrease LH in males (201, 202). Although there is still no

general consensus, chronic cannabinoid use in several species seems to decrease

testosterone production (203) and secretion (201, 202), to suppress spermatogenesis, and to

reduce the weight of testes and accessory reproductive organs (204). The important e�ects of

cannabinoids on the gonadal system are mainly attributed to CB1 receptor activation, as

demonstrated by using speci�c CB1 receptor agonists and antagonists (151, 205). De�nitive

con�rmation was provided by a recent study showing that AEA injected ip is able to lower LH

and testosterone in wild-type mice but not in CB1  mice (71). Interestingly, the testis is

known to express CB1 receptor (70) and to synthesize endocannabinoids (206). The

cannabinoid e�ect in down-regulating testosterone circulating levels may explain the

reduced copulatory behavior in male rodents exposed to Δ -THC (207).

The �nding that male genital tract �uids contain signi�cant concentrations of

endocannabinoids (74) suggests that these lipid-signaling molecules may in�uence

important processes controlling sperm/egg functions and gamete interactions. Studies with

sea urchin gametes provided the �rst evidence that cannabinoids, in particular AEA, are able

to directly inhibit achrosome reaction and sperm fertilization capacity (208). On the other

hand, seminal plasma contains high amount of AEA, and this may contribute to maintaining

sperms in a quiescent metabolic condition (74). The content of AEA decreases progressively

in the uterus, oviduct, and follicular �uid, and this change in endocannabinoids may render

sperms suitable for capacitation and fertilizing ability (74, 209). Furthermore, as shown in

sea urchin, the eggs may have the capacity to release AEA after activation by the fertilizing

sperm (210), inducing a CB1 receptor activation that might be able to prevent polyspermic

fertilization by blocking the acrosome reaction in other sperm (209).

In humans, CB1 receptor activation by AEA was also shown to reduce sperm mobility by

a�ecting mitochondrial activity, and to inhibit capacitation-induced acrosome reaction.

Importantly, these e�ects are inhibited by the CB1 receptor antagonist SR141716 (75). It is

therefore reasonable to hypothesize that AEA levels might be increased in di�erent

pathological conditions of the male reproductive tract. In these cases, the pharmacological

blockade of the endocannabinoid system might be helpful in the treatment of some forms of

male infertility (75).
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In conclusion, it appears that the endocannabinoid system plays an important role in the

regulation of the hypothalamus-pituitary-gonadal axis both in females and in males, and

fertility may be a�ected by cannabinoid drugs. This evidence may represent an important

issue in clinical endocrinological praxis. In the light of the widespread use of marijuana as a

recreational drug among young people, subtle alterations of the gonadal hormonal pro�le or

in fertility may therefore be attributed to a concomitant use of cannabis derivatives. On the

other hand, the results of human epidemiological studies have not always been clear in

con�rming this negative impact (211), and more detailed research on this topic is needed in

the future before drawing de�nitive conclusions.

IV. Endocannabinoid System in the Modulation of Energy
Balance

Two notions highlight the importance of the endocannabinoid system in the regulation of

food intake and energy metabolism. The �rst is the �nding of a high degree of evolutionary

conservation of the role of this system in the regulation of feeding responses (212). The

second is the observation that high levels of endocannabinoids in maternal milk are critically

important for the initiation of the suckling response in newborns (213).

A. Animal studies before the discovery of endocannabinoids

Animal models are ideal tools for elucidating the putative mechanism(s) of cannabinoids in

the control of energy metabolism. The studies performed in di�erent species to test the

orexigenic properties of Δ -THC up to the discovery of endocannabinoids are summarized in

Table 2 (214–244). From a general point of view, one can say that rather contradictory

results were obtained in these experiments. The ambiguous data could likely be attributed to

di�erences in the animal model and in the experimental procedures used. Moreover, in early

studies using marijuana extracts, comparisons between various experimental data sets are

extremely di�cult due to the variability of the activity of cannabis derivatives, the dosages,

and the routes of administration. In general, early studies using low doses of cannabinoids

showed a reliable increase in food intake. When doses of Δ -THC above 10 mg/kg were used, a

concomitant decrease in food intake was observed due to the confounding factors given by

the sedative e�ect of the drug. Studies employing high amounts of Δ -THC should thus be

viewed with caution in terms of e�ects on appetite and body weight. This is also the reason

why, in reviewing the studies published between 1965 and 1975, Abel reported an increased

food intake after cannabinoid administration only in 3 of 25 experiments (245). In 1998,

Williams et al. (246) provided a very convincing and well-performed experiment to
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characterize the orexigenic property of Δ -THC. The authors maximized the ability to detect

hyperphagia by adopting a prefed paradigm in which the animals were characterized by low

baseline food intake before drug administration. In this experimental setting, Δ -THC was

given orally at increasing dosage before unrestricted access to a standard diet. The authors

observed that the maximum e�ect of the drug (1.0 mg/kg) was far greater than previously

reported results, showing a 4-fold increase in food consumption over 1 h. Importantly, this

hyperphagic e�ect was largely attenuated by pretreatment with the CB1 receptor antagonist

SR141716, strongly supporting the notion that CB1 receptor activation mediates the

hyperphagic e�ect of Δ -THC (247). In this experiment, it was also reported that at doses of

Δ -THC higher than 1.0 mg/kg, the rats become unable to overeat due to the presence of

motoric and sedative side e�ects (246). These results strongly suggest that the anorectic

e�ect of Δ -THC shown by many previous reports was indirectly due to the sedated state

induced by high doses of the drug.

TABLE 2.

Summary of the e�ects of exogenous cannabinoids on food intake

Animal model  Compound  Dose  Route of
administration 

E�ects  Ref. 

Nonrodent
species 

         

    Chick  Δ -THC  1–10 mg/kg  im  ↓ FI  214 

    Dog  Δ -THC  0.5–32 mg/kg  iv  ↓ FI  215 

  Cannabis
extract 

  Smoke  ↑ FI  216 

  Δ -THC  225–3600 mg/kg  p.o.  ↓ FI  217 

  Δ -THC  225–3600 mg/kg  p.o.  ↓ FI  217 

  Cannabis
extract 

225–3600 mg/kg  p.o.  ↓ FI  217 

  Δ -THC  2 and 8 mg/kg  sc  ↑ FI  218 

    Guinea
pig 

Δ -THC  3 mg/kg  ip  ↓ BW  219 

    
Hamster 

Cannabis
extract 

200, 300 mg/kg  sc  ↓ FI  220 
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Animal model  Compound  Dose  Route of
administration 

E�ects  Ref. 

    
Monkey 

Δ -THC  4, 8 mg/kg  ip  ↓ FI  221 

  Δ -THC  100 μg  iv  ↓ FI  222 

  Δ -THC  225–3600 mg/kg  p.o.  ↓ FI  217 

  Δ -THC  225–3600 mg/kg  p.o.  ↓ FI  217 

  Cannabis
extract 

225–3600 mg/kg  p.o.  ↓ FI  217 

    Pigeon  Δ -THC  36 mg/kg  im  ↓ FI  223 

    Rabbit  Cannabis
extract 

25, 50 mg/kg  sc  ↓ FI  220 

  Δ -THC  3, 10, 30, 100
mg/kg 

sc  ↓ FI  224 

    Sheep  I-Δ -THC  0.125, 0.250, 0.50
mg 

iv  ↑ FI  242 

  9-Aza-
cannabinol 

0.25 and 0.50 mg  iv  ↑ FI  242 

  9-Aza-
cannabinol 

5.5 μg/kg  iv  ↑ FI  243 

Rat  Cannabis
extract 

10 mg/kg  ip  ↑ FI  225 

  Δ -THC  0.01–200 mg/kg  sc  ↓ FI  226 

  Cannabis
extract 

10 mg/kg  ip  ↓ FI  227 

  Δ -THC  10 mg/kg  ip  ↓ FI  228 

  Cannabis
extract 

10 mg/kg  ip  ↓ FI  229 

  Cannabis
extract 

50 mg/kg  ip  ↓ FI  229 

  Δ -THC  5–25 mg/kg  p.o.  ↓ FI  230 
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Animal model  Compound  Dose  Route of
administration 

E�ects  Ref. 

  Cannabis
extract 

5–25 mg/kg  p.o.  ↓ FI  230 

  Δ -THC  225–3600 mg/kg  p.o.  ↑ FI  217 

  Δ -THC  225–3600 mg/kg  p.o.  ↑ FI  217 

  Cannabis
extract 

225–3600 mg/kg  p.o.  ↑ FI  217 

  Δ -THC  5–80 mg/kg  ip  ↓ FI  231 

  Δ -THC  110 mg/kg  p.o.  ↑ FI  232 

  Δ -THC    Smoke  ↑ FI  244 

  Δ -THC  2.5–5.0 mg/kg  ip  ↓ FI  233 

  Δ -THC  1.25, 2.5, 5
mg/kg 

ip  ↓ FI  234 

  Δ -THC  2.5 and 5 mg/kg  ip  ↓ FI  235 

  Cannabinol  50 mg/kg  ip  ↓ FI  235 

  Cannabidiol  50 mg/kg  ip  ↓ FI  235 

  Δ -THC  2.5 and 5 mg/kg  ip  ↑ Sucrose  235 

  Cannabinol  50 mg/kg  ip  ↑ Sucrose  235 

  Cannabidiol  50 mg/kg  ip  ↑ Sucrose  235 

  Δ -THC  1, 4, 8 mg/kg  ip  ↓ FI  236 

  Δ -THC  4 mg/kg  ip  ↓ FI, BW  237 

  Δ -THC  0.25 μg  Intrahypothalamic  ↑ FI  238 

  Δ -THC  4 mg/kg  Intragastric  ↑ FI  238 

  Δ -THC  20 mg/kg  ip  ↓ FI, BW  239 

  Δ -THC  1 mg/kg  p.o.  ↑ Sweet
solution 

240 
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Animal model  Compound  Dose  Route of
administration 

E�ects  Ref. 

  Δ -THC  0.4 mg/kg  ip  ↑ FI  241 

↓, Decrease; ↑, increase; FI, food intake; BW, body weight; p.o., per os.

View Large

B. Studies in humans with exogenous cannabinoids before the
discovery of endocannabinoids

Abel (245) also critically reviewed the studies aimed at proving the stimulating e�ect of

cannabis on hunger in humans. However, the lack of scienti�c thoroughness of these earlier

studies led Abel to conclude that the putative cannabis-induced hunger e�ect was still far

from being proven (245). Greenberg et al. (248) were the �rst to systematically assess, under

rigorous experimental conditions, the e�ect of a well-de�ned amount of Δ -THC in terms of

changes in feeding behavior and in body weight in humans. Both parameters increased after

the �rst few days of the experiment. However, after this period, body weight continued to

rise, averaging 2.3 kg across the whole 21-d period study, whereas a stabilization of energy

intake was observed. This pioneer study already suggested that the ability of cannabinoids to

stimulate hunger may vanish with time, whereas a possible metabolic e�ect of the drug may

remain active longer (248). Nonetheless, later studies did not investigate the metabolic idea

further, preferring to concentrate interest on the ability of cannabis to stimulate hyperphagia

and overconsumption of highly palatable food at the central level. In 1986, Foltin et al. (249)

noted a relevant increase in frequency and consumption of snack foods induced by marijuana

only in the periods of social facilitation and environmental familiarity and not when the

subjects were alone, indicating on the one hand a strong link between recreational use of the

drug and its orexigenic properties and, on the other hand, the ability of marijuana to drive

the tendency for palatable food. This hypothesis was further substantiated by the same group

a few years later when increased total food intake particularly related to consumption of

palatable food (sweet solid snacks) was observed as a main e�ect of smoked marijuana (250).

The stimulating e�ect of cannabinoids on appetite observed in healthy subjects promoted

assessment of the e�cacy of a cannabinoid treatment for clinical syndromes featuring loss

of appetite or weight, such as cancer or AIDS-associated anorexia (251–253), or as adjuvant

therapy to limit nausea and vomiting symptoms associated with most chemotherapeutic

drugs (254). In 1985, the U.S. Food and Drug Administration o�cially approved the use of Δ -

THC (commercially named Dronabinol) for the treatment of chemotherapy-induced nausea

and vomiting refractory to other drugs. In 1992, Dronabinol was approved for the treatment
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of patients with HIV-induced wasting syndrome. Recently, Dronabinol was also proposed as

an orexigenic drug in patients su�ering from Alzheimer’s disease (255).

The most comprehensive data are those obtained when Dronabinol was administered in HIV

patients with wasting syndrome (252, 256–259). To varying degrees, the drug was able to

mildly increase appetite and energy intake in all studies. However, a marked improvement in

mood was also documented, raising the question of whether the positive e�ect in energy

balance may derive from a speci�c action of cannabinoids in the brain areas controlling food

intake or may be simply due to a generalized change in the sense of well-being. Intriguingly,

in some reports, a signi�cant gain was found in body fat mass associated with minimal

changes in appetite rating and food intake (255, 258). At that time, this �nding remained

unexplained. However, with the current knowledge of CB1 receptor expression at the level of

the adipose tissue (58, 59), we can hypothesize that the increase in fat mass of HIV patients

was probably due to a direct lipogenic action of Δ -THC. In this context, it is still unknown,

and it would be of great relevance to investigate whether the administration of Dronabinol

can improve the pathological changes in fat distribution induced by the concomitant

retroviral therapy in patients with AIDS (260).

C. Endocannabinoid functions at mesolimbic level to regulate
rewarding properties of food

After the �nding of the hyperphagic e�ect of Δ -THC mediated by CB1 receptor activation,

Williams and Kirkham (261) reported that endocannabinoids were also able to stimulate

hunger in a dose-dependent manner. The degree of overeating induced by 1 mg/kg AEA was

only a 2-fold increase over a 3-h test, therefore less than that obtained with the same dosage

of Δ -THC. However, Δ -THC-induced hyperphagia was restricted to the �rst hour of testing,

whereas the AEA e�ect was evident later when the inhibitory e�ects of the prefeed started to

wane (261). The authors speculated that administration of AEA may represent an

ampli�cation of endocannabinoid activity associated with the normal, episodic pattern of

meal-taking in rats (261).

Importantly, the e�ect of AEA was completely blocked by pretreating the animals with

SR141716, con�rming the pivotal role of CB1 receptor activation in the hyperphagic e�ects of

endocannabinoids (247, 262). Similar conclusions were derived from other studies in which

AEA was able to exert an appetite-stimulating e�ect even at very low doses in mice (0.001

mg/kg) (263) and 2-AG was capable of promoting feeding behavior (264). These data

therefore make it possible to attribute the endocannabinoid system with an important role in

the processes underlying the motivation to obtain food. It is suggested that

endocannabinoids gradually increase during intermeal intervals, reaching a critical level
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where motivation to eat is triggered. Accordingly, the longer the time since the last meal, the

greater the activity in relevant endocannabinoid circuits, and consequently the higher the

motivation to eat (265). The �ndings of increased levels of AEA and 2-AG in the fasting

condition in the nucleus accumbens and a decline of 2-AG concomitant with the feeding state

strongly support this hypothesis (264). Interestingly, unchanged levels of endocannabinoids

were shown in the cerebellum, a region not involved in the control of feeding, further

con�rming the notion that endocannabinoids are produced in situ and on demand (264).

With the advent of CB1 receptor-speci�c antagonists (Table 3), it became clear that, even

when injected alone, these compounds are able to modify ingestive behavior. An ip injection

of SR141716 was found to signi�cantly reduce sucrose or alcohol intake and craving in

rodents (266–268) and in marmosets (269), leading to the hypothesis that the activation of

the endocannabinoid system may alter the appetitive value of ingested substances. This idea

is consistent with the evidence in favor of a facilitatory function of the endocannabinoid

system on brain reward circuits (266, 269). Evidence therefore suggests that

endocannabinoids bring forward the onset of eating in satiated animals and increase the

incentive value of the food regardless of the quality of the macronutrients (“incentive

hypothesis”) (270). Other �ndings, however, resembling the “marshmallow e�ect” in

marijuana smokers (245), have been interpreted in terms of an endocannabinoid action

toward a preference to eat highly palatable food (“orosensory reward hypothesis”) (271). In

favor of this latter hypothesis, there are several reports indicating the ability of CB1 receptor

blockade to decrease the rewarding properties of addictive drugs (186, 272–274). It is now

clear that the endocannabinoid system participates in the modulation of

“reward/reinforcement” circuitries and its manipulation is able to in�uence reward-related

behaviors (275). The high expression of CB1 receptor in areas involved in reward constitutes a

strong indication that the endocannabinoid system is directly involved in various

physiological functions controlled in these brain regions, including feeding (43). The

reward/reinforcement circuitry of the mammalian brain consists of a series of synaptically

interconnected brain nuclei associated with the medial forebrain bundle, linking the VTA, the

nucleus accumbens, and the ventral pallidum (275). This circuit is implicated in the pleasure

produced by natural rewards, such as food, addictive drugs, and sex, and it is the neural

substrate of drug addiction and addiction-related phenomena, such as craving and dysphoria

induced by withdrawal (275). In such a framework, food intake acts on dopamine, opioid,

serotonin, and noradrenaline neuronal �bers, which connect the hindbrain and midbrain to

the hypothalamus to modulate the action of feeding and satiety factors (276).

TABLE 3.

Summary of the e�ect of CB1 antagonist treatment on food intake in di�erent rodent models
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CB1
antagonist 

Dosage and
route 

Animal
model 

Length of
treatment 

Diet  E�ect  Ref. 

SR141716  2.5 mg/kg·d
ip 

Wistar
rats 

14 d  SD  −3.3% BW vs.
vehicle 

305 

SR141716  10 mg/kg·d
ip 

Wistar
rats 

14 d  SD  −6.9% BW vs.
vehicle 

305 

SR141716  10 mg/kg·d
ip 

Zucker
rats 

14 d  SD  −20% BW vs.
vehicle 

59 

SR141716  10 mg/kg·d
oral 

Mice  5 wk  HFD  −20% BW vs. HFD-
vehicle 

306 

SR141716  3 mg/kg·d
oral 

Mice  40 d  HFD  −10% BW vs. HFD-
vehicle 

306 

SR141716  10 mg/kg·d
oral 

Mice  40 d  HFD  −18% BW vs. HFD-
vehicle 

306 

SR141716  10 mg/kg·d
oral 

Mice  3 d  Caloric
restriction 

−20% BW vs.
pairfed 

306 

AM 251  3 mg/kg·d
oral 

Mice  14 d  HFD  −10% BW vs. HFD-
vehicle 

311 

AM 251  30 mg/kg·d
oral 

Mice  14 d  HFD  −20% BW vs. HFD-
vehicle 

311 

SR141716  10 mg/kg·d
oral 

Mice  10 wk  HFD  −22% BW vs. HFD-
vehicle 

309 

BW, Body weight; SD, standard diet; HFD, high-fat diet.

View Large

The most relevant reward pathway is represented by the mesolimbic dopaminergic system. It

has been shown that increased levels of extracellular dopamine and its metabolites are found

within the nucleus accumbens after ingestion of highly palatable food (277). Moreover,

administration of a dopamine D1 agonist reduces food intake (278). Both CB1 receptor and

endocannabinoids were found in the rat limbic forebrain (279), in which colocalization with

dopamine D1 and D2 and CB1 receptor were described (280). Psychoactive drugs such as

marijuana, ethanol, and also pleasant stimuli or palatable food are known to induce the

release of dopamine in speci�c brain regions (281). A correlation between limbic

endocannabinoid/dopamine levels and craving for tasty food is thus presumed to occur (275).

https://academic.oup.com/view-large/51314871
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Verty et al. (282) recently substantiated the hypothesis of the existence of cannabinoid-

dopamine interactions in feeding behavior, demonstrating that the dopamine D1 antagonist

SCH 23390 attenuated feeding induced by Δ -THC. The endocannabinoid system also

provides retrograde control of synaptic transmission onto the VTA dopaminergic neurons,

where the postsynaptic synthesis of endocannabinoids is under the control of

somatodendritically released dopamine (108).

A relevant interplay also exists between the endocannabinoid system and the endogenous

opioid peptides (283). Both systems are linked to central reward processes, and there is

increasing evidence supporting an important functional cross-talk between the two systems,

in relation to a wide range of physiological processes, including appetite. Several reports

indicate that opioid receptor agonists increase food intake (284–286), whereas opioid

antagonists induce anorectic e�ects (287). Gallate and McGregor (267) found that the

facilitatory e�ects of a cannabinoid agonist on responding to palatable solutions were

reversed not only by CB1 receptor antagonism but also by naloxone, an opioid receptor

antagonist. The existence of cross-talk between the endocannabinoid and opioid systems in

controlling food intake was also con�rmed by several studies in which naloxone and

SR141716 synergistically depress food intake at doses that do not alter food intake on their

own (287, 288). However, a recent �nding seems to localize the interaction between opioids

and endocannabinoids involved in feeding behavior not at the mesolimbic system level but,

preferentially, at the level of the PVN of the hypothalamus. In fact, SR141716 was able to

attenuate morphine-induced feeding only when the opioid was directly injected in the PVN

and not in the nucleus accumbens. According to this last �nding, the endocannabinoid

system appears to participate in the opioid-mediated enhancement of rewarding properties

of food in the hypothalamus and not in the nucleus accumbens (286).

According to the involvement of serotonin in the control of feeding behavior (289), the

interaction of the endocannabinoid system with the serotoninergic system has also been

investigated. However, the administration of a CB1 receptor antagonist in rats combined with

dexfen�uramine, an anorectic drug stimulating the release of serotonin, led to additional but

not synergistic e�ects on reducing food intake, which is consistent with the hypothesis that

the two pathways work via independent mechanisms of action (288). This notion is

important, because it makes it possible to exclude a synergistic e�ect in a possible future

combination of antiobesity drugs such as those inhibiting serotonin reuptake, like

sibutramine (290) and CB1 receptor antagonists.

D. The endocannabinoid system as a new hypothalamic player in the
regulation of food intake

9
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A complex and redundant neuronal hypothalamic network provides high levels of

adaptability of feeding behavior to various central and peripheral stimuli (291). Redundancy

in appetite-stimulating signaling is conceivable in view of the vital importance of feeding for

survival (291). Whereas defects in anorexigenic signaling pathways almost always lead to

obesity, loss of orexigenic signals rarely results in a lean phenotype. An example of this

redundancy in orexigenic hypothalamic signaling systems is provided by mice lacking

neuropeptide Y (one of the most important appetite-stimulating neuropeptides) where

compensatory mechanisms are likely to be activated (292). Signals coming from various

peripheral organs, such as the liver, gastrointestinal tract, and adipose tissue, are conveyed

mainly at the hypothalamic level to constantly inform the brain about the state of nutrition

(291, 293). An example of such peripheral control is the adipocyte-derived hormone leptin,

which acts on receptors located in the hypothalamus (291). A milestone in the identi�cation

of the endocannabinoid system as a new player in the regulation of food intake at

hypothalamic level was the �nding that leptin is a strong modulator of hypothalamic

endocannabinoid levels (294). Di Marzo et al. showed that acute leptin treatment reduced

AEA and 2-AG not only in the hypothalami of normal mice but also in mice lacking leptin

signaling. They also described the defect in leptin signaling as being constitutively associated

with elevated hypothalamic levels of endocannabinoids. In these animals, SR141716 was able

to reduce food intake, con�rming the anorectic properties of the compound (294). These

�ndings suggest that, at least in genetically modi�ed animal models, obesity is associated

with a chronic hypothalamic overactivation of the endocannabinoid system, which may in

turn explain the hyperphagic behavior of the animals having leptin signal impairment.

However, before giving a general value to this assumption, the intrahypothalamic amount of

endocannabinoid levels during the development of obesity in normal rodents eating a high-

fat diet must be investigated. Nevertheless, endocannabinoids are variably produced in the

hypothalamus of normal animals. In fact, 2-AG levels increase during acute fasting, decline

as the animals are refed, and return to normal values in satiated animals (264, 295).

However, a long period of diet restriction (12 d) was found to be associated with reduced

levels of 2-AG in the hypothalamus (295). The authors interpreted these data observing that

the decrease of 2-AG levels in mice after a prolonged diet may represent a general

psychobehavioral strategy for intermittent starvation when food is scarce (295).

As mentioned above, the hypothalamus is not the cerebral area where the highest levels of

CB1 receptor expression are found (24, 36, 38). However, studies using [ S]GTPγS binding

indicated that the hypothalamic CB1 receptor coupling to G proteins is more e�cient than in

other cerebral areas known to be a site of high CB1 receptor expression, such as the

hippocampus or the entopeduncular nucleus (43). On the other hand, it is also evident that

CB1 receptors are present at a very high density in the brain compared with other receptors.

Therefore, even regions with a relatively lower density of CB1 receptors, such as the

35
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hypothalamus, contain a signi�cant number of receptors. Both these factors thus probably

explain the ability of hypothalamic CB1 receptors to strongly a�ect the functions of this brain

region. Interestingly, no changes in CB1 receptor expression have been shown at the level of

hypothalamus after diet modi�cation (296). The direct involvement of the hypothalamus in

the modulation of food intake operated by endocannabinoids was also demonstrated by the

signi�cant hyperphagic e�ects of AEA directly administered into the ventromedial nucleus

and by the inhibition of this e�ect obtained by the injection of SR141716 via the same route

(297).

It was only during the last few years that the interaction of CB1 receptor and

endocannabinoids in feeding-regulating pathways started to be elucidated in detail. The CB1

receptor is expressed in key hypothalamic peptidergic systems, such as those producing CRH

in the PVN, cocaine-amphetamine-related transcript in the dorsomedial nucleus, and

melanin-concentrating hormone and orexins in the lateral hypothalamus-perifornical area

(58). Importantly, these data were recently con�rmed by the demonstration that CB1

receptor activation strongly augments the orexin-A-stimulated intracellular pathway (88).

CB1  mice also possess increased CRH and reduced cocaine-amphetamine-related

transcript expression, indicating that the genetic impairment of the endocannabinoid system

may a�ect the pattern of gene expression of peptides involved in the regulation of food

intake (58). Conversely, the neuropeptide Y/agouti-related protein system in the arcuate

nucleus does not seem to be directly targeted by endocannabinoid action (58, 294). This fact

con�rms that orexigenic pathways are less critical (or at least functionally more redundant)

in the chronic maintenance of energy balance (298). Functional cross-talk between CB1

receptor and melanocortin receptor type 4 (MCR4) has been recently highlighted by the

�nding of the synergistic action of subanorectic doses of SR141716 and of a MCR4 agonist

administered together (299). Furthermore, the same authors showed that the orexigenic

impulse given by the administration of CB1 receptor agonists is not blocked by the

costimulation with MCR4 agonists, whereas CB1 receptor antagonists are able to inhibit the

stimulation of food intake induced by MCR4 antagonists. Consequently, the authors

hypothesized that the melanocortin receptor signaling in the hypothalamic regulation of

food intake is upstream of the activation of the endocannabinoid system (299).

The mechanism(s) of action of the endocannabinoids at hypothalamic synaptic level are still

a matter of debate. Great progress has recently been made by the �nding that

postsynaptically released endocannabinoids acting at presynaptic CB1 receptors are able to

decrease glutaminergic transmission onto CRH-producing neurons, resulting in an

inhibition of CRH release (103). This release of endocannabinoids from the parvocellular

neurons is stimulated by a nongenomic e�ect of glucocorticoids. Therefore, it is conceivable

that the well-known regulation of food intake by glucocorticoids may partly derive from
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functional cross-talk with the endocannabinoid system (300). The same inhibitory

mechanism mediated by glucocorticoids through an activation of the endocannabinoid

system has also been proposed for other hormones and neuropeptides such as oxytocin and

vasopressin (103). In this sense, we may speculate that the recently described interaction

between endocannabinoid and the oxytocin system in modulating food intake (301) may

derive from the same fast feedback mechanism mediated by nongenomic glucocorticoid

inhibition.

Despite the dogma that neurons do not utilize fatty acids for energy, a growing body of

evidence points to a critical role for both fatty acid production and utilization in regulating

hypthalamic neurons that regulate food intake (302). In fact, inhibitors of fatty acid synthase

are capable of greatly a�ecting appetite in an anorexigenic manner (303, 304). In such a

scenario, it has recently been proposed that via CB1 receptors, endocannabinoids may

modulate the fatty acid synthetic pathway in the hypothalamus, and the inhibition of the

hypothalamic expression by rimonabant may explain the anorexigenic properties of

cannabinoid antagonists (62).

E. The peripheral e�ect of the endocannabinoid system in the
modulation of metabolic functions

Several lines of evidence are currently converging, indicating that the e�ects of CB1 receptor

blockade on food intake and body weight are not limited to a central mode of action. An early

report describing the e�ect of CB1 receptor blockade on changes in food intake and in body

weight was, in this sense, highly predictive of a mechanism of action not limited to the

mesolimibic or hypothalamic circuits. In fact, Colombo et al. (305) were the �rst to

demonstrate, in lean rats fed with a standard diet, that the tolerance to the anorectic e�ects

of two di�erent doses of SR141716 (2.5 and 10 mg/kg) develops rather rapidly (5 d).

Nevertheless, the body weight loss in SR141716-treated rats persisted for 14 d, well beyond

the drug e�ect on food intake. At that time, the authors were not able to explain this body

weight loss that was not related to a decrease in food intake, and they merely hypothesized a

stimulatory action of SR141716 on the energy expenditure (305). However, in the last 2 yr, the

use of CB1  mice has represented an important tool to substantiate further the hypothesis of

an additional e�ect of endocannabinoids in peripheral organs. Indeed, the lack of CB1

receptor in mutant mice causes hypophagia and body fat reduction. Importantly, pair-

feeding experiments showed that in young CB1  mice, the lean phenotype is predominantly

caused by decreased caloric intake, whereas in adult CB1  mice metabolic factors appear to

be the major cause of the lean phenotype. These experiments therefore suggested that the

endocannabinoid system might regulate central food intake-related mechanisms at young

ages, but that this function diminishes with age (58). These observations converge on the
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idea that additional peripheral food intake-independent metabolic functions may

participate, or even predominate, in the control of energy balance exerted by the

endocannabinoid system (58). Even more prominent di�erences in terms of body weight

regulation are obtained when a high-fat diet is administered to adult CB1  mice and wild-

type littermates. In contrast to wild-type littermates, CB1  mice do not display hyperphagia

or reduction of their relative energy intake and were resistant to diet-induced obesity (DIO)

(306). Importantly, the obesity-prone diet induced a signi�cant increase of fasting glycemia

in the two genotypes, but the sensitivity to insulin remained unchanged in CB1  mice,

whereas it was signi�cantly reduced in the wild-type animals (306).

The expression of CB1 receptor in adipocytes and the ability of SR141716 to block lipogenesis

stimulated by cannabinoids represent a �rst important step forward in understanding the

peripheral mechanisms of action of the endocannabinoid system in regulating metabolic

processes (58). Moreover, the presence of CB1 receptor is increased in mature adipocytes

compared with preadipocytes (59, 60), indicating that CB1 receptor activation is likely

needed more for metabolic processes than for di�erentiation. Importantly, a recent study

shed further light on the mechanisms of action of the endocannabinoid system on adipose

tissue. By using SR141716 in DIO mice, Jbilo et al. (307) were able to reverse the phenotype of

obese adipocytes at both macroscopic and genomic levels. They showed that a major

restoration of white adipocyte morphology similar to lean animals occurred in adipocytes

derived from obese animals after CB1 antagonist treatment. More importantly, they found

that the major alterations in gene expression levels induced by obesity in white adipose

tissue were mostly reversed in SR141716-treated obese mice. Importantly, the transcriptional

patterns of treated obese mice were similar to those obtained in the CB1  mice fed with a

high-fat diet, supporting a CB1 receptor-mediated process. Functional analysis of these

modulations indicated that the reduction of adipose mass by the drug was due to enhanced

lipolysis through the induction of enzymes of the β-oxidation and tricarboxylic acid cycle;

increased energy expenditure, mainly through futile cycling (calcium and substrate); and a

tight regulation of glucose homeostasis. In particular, in this last context the SR141716-

induced increased expression of glucose transporter 4, the insulin-responsive glucose

transporter, appears very important (307). This �nding makes it possible to hypothesize that

cannabinoid antagonists may also be attractive drugs in �ghting diabetes. Altogether, these

data con�rmed that the endocannabinoid system has a major role in the regulation of energy

metabolism in adipocytes. Importantly, CB1 receptor expression has been found to be higher

in adipocytes derived from obese animals compared with lean controls (59). Similar to the

�nding of higher levels of endocannabinoids in the hypothalamus derived from obese

animals, the overexpression of CB1 receptor in adipocytes of obese rats seems to con�rm the

notion that hyperactivity of the endocannabinoid system is associated with the obesity state.

However, this up-regulation of CB1 receptor expression in fat pads derived from rodents has
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not been con�rmed in adipocytes derived from sc fat of obese women (60); on the other

hand, a partial limitation of this study is that CB1 receptors have not been measured in

visceral fat tissue that is supposed to be more prone to the endocannabinoid action. Finally,

the increase in levels of adiponectin in Zucker obese rats chronically treated with SR141716 in

vivo (59) and in 3T3 F442A adipocytes acutely stimulated with the CB1 receptor antagonist in

vitro (59) points to a close relationship between CB1 receptor blockade and the production of

this antiatherogenic and antidiabetic adipocyte-derived protein (308). The quick and strong

improvement of hyperinsulinemia detected after a very short-term treatment with SR141716

(4 d) in obese Zucker rats was also attributed to an increase in adiponectin (59). However, the

well-known reduction in food intake and the consequent body weight loss displayed at the

beginning of SR141716 treatment may be the most obvious explanation for the changes in

adiponectin levels. The ability of long-term treatment with SR141716 to enhance the

circulating levels of adiponectin was further con�rmed in DIO mice (309).

In the last few years, several studies using di�erent CB1 receptor antagonists con�rmed the

hypothesis that a potential peripheral mode of action of pharmacological CB1 receptor

blockade may play a relevant role in the �nal weight loss e�ect. Ravinet-Trillou et al. (310)

found that long-term (40 d) treatment with two di�erent dosages of SR141716 (3 and 10

mg/kg, respectively) produces a marked acute hypophagia in DIO mice only in the �rst few

days of treatment, followed by the development of tolerance to the anorectic e�ect of the

drug. However, the e�ect on body weight was sustained until the end of the 5-wk experiment

compared with DIO mice treated with the vehicle. The signi�cant di�erence in weight of

white adipose pads between SR141716- and vehicle-treated animals con�rmed that weight

loss was accompanied by a decrease in adipose tissue. Similar data showed a rapid tolerance

to the anorectic action despite a sustained and prolonged e�ect on body fat loss also being

obtained when obese Zucker rats were treated for 14 d with SR141716 (59). Importantly,

another CB1 receptor antagonist, AM-251, produced similar e�ects in DIO mice (311). Very

recently, Poirier et al. (309) monitored weight and metabolic marker changes in three groups

of mice after establishing a condition of obesity by a 5-month high-fat diet. Two groups of

animals were maintained on a high-fat diet, but one was treated for 10-wk with 10 mg/kg

SR141716 and the other one with a vehicle. A third group received a dietary switch to standard

food after the 5 months on a high-fat diet. SR141716 induced a weight loss of approximately

of 78% in comparison to the weight of the animals receiving the vehicle. More importantly,

the antiobesity e�ect of the drug was equivalent (both in terms of time course and maximum

e�ect) to that achieved by switching obese mice to a normal diet (309). Again, the authors

demonstrated that the anorectic e�ect of the CB1 receptor antagonist vanished with time

because the energy intake in the SR141716-treated animals was equivalent to animals on a

high-fat diet during the last 6 wk of the experiment and signi�cantly greater than in the

group receiving standard diet. Consistent with a previous report (310), the SR141716-induced
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weight loss was accompanied by normalization of leptin, insulin, and glucose levels (309).

Notably, SR141716 also normalized triglycerides and low-density lipoprotein-cholesterol.

Moreover, the high-density lipoprotein (HDL)-cholesterol/low-density lipoprotein-

cholesterol ratio after SR141716 treatment was signi�cantly higher than in the other two

groups (309). Whether this e�ect on lipid metabolism is indirectly related to an elevation of

adiponectin is still a matter of debate.

Shearman et al. (312) recently showed that a 9-d treatment of DIO mice with the CB1 receptor

antagonist AM251 increases uncoupling protein (UCP)-1 and UCP-3 mRNA expression level

in brown adipose tissue, suggesting that CB1 receptor blockade may contribute to increased

thermogenesis. Moreover, Liu et al. (61) found that a 7-d treatment with SR141716 induces an

increase in basal oxygen consumption compared with the vehicle in ob/ob mice. The authors

were not able to identify the mechanism by which SR141716 treatment is able to a�ect energy

expenditure. A start on clarifying the molecular mechanism by which treatment with

SR141716 may favor thermogenesis has been made with the microarray experiment

performed by Jbilo et al. (307). These data suggest that the cannabinoid antagonist treatment

is able to stimulate the expression of genes favoring energy dissipation through

mitochondrial heat production in brown adipose tissue (307). However, it should be

mentioned that in vivo microdialysis studies showed that SR141716 increases noradrenaline

out�ow in rat anterior hypothalamus, suggesting a possible central stimulation of e�erent

sympathetic activity (313). Importantly, Liu et al. (61) also showed that a 7-d treatment of

SR141716 induces a signi�cant increase in glucose uptake in isolated soleus muscle. This

activity might contribute to the improved hyperglycemia seen after SR141716 treatment in

previous studies. As shown in Fig. 2, we found that the soleus muscle derived from obese

mice contains increased levels of CB1 receptor compared with lean controls, further

con�rming the hypothesis of a hyperactivity of the endocannabinoid system associated with

a condition of obesity.

FIG. 2.
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Schematic representation of the main e�ects of CB1 on intracellular signaling cascades. Activation of CB1 leads
to the stimulation of Gi/o proteins that, in turn, inhibits the adenylate cyclase-mediated conversion of ATP to

cAMP. cAMP molecules can bind the regulatory subunits of protein kinase A (PKA) and cause the liberation of
the catalytic subunits. Activated PKA can phosphorylate A-type potassium (K A) channels, causing a decrease

of the current. Given the negative e�ect of CB1 on adenylate cyclase, the final result is an activation of K A
channels. Gi/o activated by CB1 can also directly inhibit N- or P/Q-type Ca  channels and activate inwardly

rectifying potassium (Kir) channels. These last two e�ects are controlled by protein kinase C (PKC), which, a�er

activation, can phosphorylate CB1 in the third cytoplasmatic loop and uncouple the receptor from the ion
channels. Activation of CB1 can also stimulate several intracellular kinases, such as focal adhesion kinase
(FAK), phosphatidyl inositol-3-kinase (PI3-K) and its downstream e�ector protein kinase B (PKB)/AKT, ERKs, c-
Jun N-terminal kinase (c-JNK), and p38 MAPK (p38). Stimulation of cytoplasmic kinases could also mediate the
CB1-induced expression of the immediate early genes (IEG), such as the transcription factors c-fos, c-jun, and
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Hepatocytes, key players in the metabolic processes, were not considered as a target of

endocannabinoid action for a long period of time. However, substantial amounts of 2-AG are

present in the liver (1.15 nmol/g tissue), and this quantity is nearly double the amount

detected in other peripheral organs (295). These observations suggested the idea that the

liver might be a new target of endocannabinoid action. Very recently, Osei-Hyiaman et al.

(62) strongly substantiated this hypothesis by a series of experiments in which they

identi�ed the liver as a primary site for endocannabinoid-mediated modulation of

lipogenesis. In fact, probably via inhibition of adenylate cyclase, the cannabinoid agonist

HU210 stimulates the expression of several genes involved in the de novo synthesis of fatty

acids, such as lipogenic transcription factor SREBP-1c and its targets acetyl-CoA

carboxylase-1 and fatty acid synthase. The inhibition of this lipogenic response by SR141716

and its absence in CB1  mice con�rms the lipogenic role of CB1 receptors localized in

hepatocytes. However, more importantly, the authors found that the marked increase in the

basal rate of hepatic fatty acid synthesis as well as the development of hepatic steatosis

observed after the administration of high-fat diet were blunted by SR141716 and absent in

CB1 receptor knockout mice. High-fat diet also induces an increase in the number of CB1

receptors and in hepatic levels of AEA, strongly suggesting that the blockade of the

endocannabinoid system plays an important protection against the pathological

consequences of a fat diet in the liver (62). These data pave the way to hypothesize the

clinical use of CB1 antagonists in preventing or reversing the development of fatty liver.

Another recent report showed that cannabinoids inhibit AMP-activated protein kinase

activity in the liver (314). A decrease of AMP-activated protein kinase activity is known to

lead to increased storage of energy, particularly in the form of fat, in hepatocytes. This

mechanism may contribute to explaining the role of endocannabinoids in promoting the

development of hepatic steatosis. Based on the whole body result of these data, it has been

hypothesized recently that the hepatic endocannabinoid system may represent a target for

the treatment of nonalcoholic fatty liver disease (315).

A considerable amount of evidence suggests that the endocannabinoid system may regulate

food intake by also acting in the gastrointestinal tract. Importantly, the concentration of AEA

in intestinal tissue increases during food deprivation in rats, reaching levels that are 3-fold

greater than those needed to halve maximally activated CB1 receptor and 7-fold higher than

the amount detected after refeeding. This surge in AEA levels may, together with the increase

in the CNS, be another hunger signal to promote feeding (316). In general, we can conclude

that through multiple interactions, endocannabinoids may modulate food intake also at the

level of the gastrointestinal tract.

zif268, and the brain-derived neurotrophic factor (BDNF). Note that these events were described in di�erent
cellular systems and, therefore, they might not occur in the same cell types.
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F. Oleoylethanolamide: a new anorectic fatty acid amide

Another endogenous lipid, a monounsaturated fatty acid ethanolamide, named

oleoylethanolamide (OEA), was recently proposed as an important modulator of food intake

(317). OEA is an analog of AEA, but the activation of any of the known cannabinoid receptors

cannot explain its pharmacological e�ects. Recently, Piomelli’s group elucidated that its

action is through an activation of the nuclear receptor peroxisome proliferator-activated

receptor (PPAR)-α (318).

Peripheral administration of OEA causes a potent and persistent decrease in food intake, but

this compound is completely ine�ective when administered centrally (316–318). OEA-

induced anorexia is not caused by nonspeci�c behavioral e�ects, because no aversion or

illnesses have been reported after the peripheral administration of the compound (319).

Interestingly, similar to the e�ects described after the administration of capsaicin (vanilloid

type 1 receptor agonist) and of the PPAR-α agonist Wy-14643, a short-term reduction in heat

expenditure and locomotor activity has been observed after the peripheral administration of

OEA (319). However, the mechanisms underlying the reduction in motor activity remain

unclear (319). OEA not only acts as a satiety signal, but also reduces body weight gain and

serum lipid levels in genetically obese rats and in DIO mice (318). Through the direct

activation of PPAR-α, OEA may stimulate lipolysis and fatty acid oxidation (320). However,

when administered orally (321), its tissue distribution is mainly at gastrointestinal levels

rather than in other visceral organs controlling metabolism, supporting the hypothesis that

OEA acts on PPAR-α present in the initial segment of the gastrointestinal tract, such as

stomach, duodenum, and jejunum. Importantly, these data were recently independently

con�rmed by another group (322). In conclusion, OEA is a new orally active anorectic agent

that may possess potential as a new antiobesity drug.

V. Cannabinoid Receptor Antagonists as New
Pharmacological Tools to Tackle Obesity and Obesity-
Related Diseases

A. Emerging issues in the treatment of obesity and related diseases
by cannabinoid antagonists

The whole body of data mentioned above highlights the role of the endocannabinoid system

in feeding and energy balance regulation. Indeed, it was reasonable to hypothesize a

therapeutic role for cannabinoid antagonists in the treatment of obesity. SR141716, also
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named rimonabant (commercialized as Acomplia), is now undergoing multicenter

randomized, double-blind phase III trials to assess the e�ects on weight loss in obese

patients with or without comorbidities with dyslipidemia and with type 2 diabetes (323).

Moreover, the multitude of patents �led over the last few years claiming the synthesis of

novel CB1 receptor antagonists re�ects the intense competition in this area (123). Other

compounds are under development, such as SLV-319 (Solvay, Weesp, The Netherlands)

(129), which is undergoing phase I trials (323). However, at present, little is known about the

results of these trials.

B. Clinical trial studies with rimonabant, the first CB1 receptor
antagonist in clinical use to tackle obesity and obesity-related
diseases

The CB1 receptor antagonist rimonabant was initially tested in humans not as an antiobesity

drug but for its potential ability to reduce subjective intoxication and tachycardia in healthy

subjects with a history of marijuana use or as an antipsychotic agent in schizophrenic

patients. The �rst study showed that rimonabant was well tolerated by the participants even

at a 90-mg dose (single oral dose). A signi�cant dose-dependent blockade of marijuana

e�ects was shown. However, the ability to reduce the intoxication induced by marijuana was

very mild (130).

The results derived from the clinical trial in which rimonabant was tested to treat

schizophrenia and schizoa�ective disorders were not very satisfactory, because the e�ects of

the drug in ameliorating clinical symptoms were not di�erent from those obtained by

placebo (324). However, in this trial, rimonabant treatment at 20 mg/d dosage was very well

tolerated.

Bearing in mind the function of the endocannabinoid system in the mesolimbic rewarding

system, rimonabant is also undergoing clinical trials as an aid to preventing the relapse of

smoking cessation (323). Preliminary data from the STRATUS-US trial (smoking cessation in

smokers motivated to quit) were recently presented at the 53rd Annual Scienti�c Session of

the American College of Cardiology. The clinical study enrolled 787 smokers who received

rimonabant at a dose of 5 or 20 mg or a placebo in a randomized fashion. The clinical trial

lasted 10 wk, and the smokers were permitted to smoke during the �rst 2 wk but were asked

to abstain from smoking after this period. The quit rate for subjects in the 20-mg rimonabant

group was double that of the placebo group. In particular, the smokers characterized by

overweight and obesity showed a relevant reduction in weight gain over the 10-wk treatment

(325).
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The most promising data seem to derive from rimonabant as a treatment for obesity. A phase

II, 4-month, double blind, placebo-controlled study examined the e�ect of three di�erent

dosages of rimonabant (5, 10, or 20 mg/d) in obese patients with a body mass index between

30 and 40 kg/m . Patients taking the 20-mg dose reported a weight loss of 4.4 kg in

comparison to the 1.1-kg average in the placebo group. No signi�cant adverse e�ects were

noted. At the end of the treatment, weight loss was not maintained. However, the rebound in

weight did not reach the pretreatment values (323). Another phase II, 7-d treatment, double-

blind, placebo-controlled study was performed to evaluate hunger, calorie and fat intake. All

these parameters were signi�cantly reduced at the end of the short treatment, and the

resulting average loss in body weight was 0.72 kg. The drug showed a good safety pro�le

(323).

A large phase III trial named as RIO (rimonabant in obesity) was initiated in August 2001

including more than 6600 overweight or obese patients (323). All studies have already been

concluded, and some of them are already reported in the literature (326, 327). Two of these

studies, named RIO-North America and RIO-Europe, recruited obese and overweight

patients with or without comorbidities who were treated for 2 yr with 5 or 20 mg rimonabant

vs. placebo. The primary endpoints of the RIO-North America study were the absolute change

in weight from baseline to 1 yr and the prevention of weight regain after rerandomization

(second year), whereas the main endpoint of the RIO-Europe study was the assessment of

weight reduction by using the same dosages. Secondary endpoints of both studies were the

number of weight responders and the changes in waist circumference, metabolic and lipid

parameters, and the number of patients a�ected by the metabolic syndrome as de�ned by

National Cholesterol Education Program’s Adult Treatment Program III (NCEP-ATP III)

criteria (328). RIO-Lipids and RIO-Diabetes are the other two clinical trials with rimonabant

aimed at investigating the amelioration, after treatment with the CB1 receptor antagonist, of

speci�c comorbidity factors associated with obesity or overweight such as hyperlipidemia

and diabetes. In the RIO-Lipids study, presented by the American College of Cardiology in

New Orleans in March 2004, 1036 obese patients characterized by lipid pro�le alterations and

body mass index of 27–40 kg/m  were randomized to double-blind treatment with either

placebo or rimonabant 5 or 20 mg/d (326). All patients were required to follow a reduced

calorie diet. After 1 yr of therapy, patients in the 20-mg dose group showed a loss of 8.8 kg

compared with the 2-kg reduction in the patients treated with placebo. Rimonabant was

associated with an important and signi�cant reduction in waist circumference, tryglicerides,

and C reactive protein, whereas a signi�cant increase in HDL-cholesterol was found in the

20-mg treatment group compared with the group of patients undergoing placebo treatment.

Forty-three percent of patients in the 20-mg treatment cohort lost more than 10% of their

initial body weight compared with the 10.3% observed in the placebo group. The number of

patients in the 20-mg rimonabant group classi�ed as having metabolic syndrome (according

2

2



6/23/2018 Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance | Endocrine Reviews | Oxford Academic

https://academic.oup.com/edrv/article/27/1/73/2355171 44/93

Skip to Main Content

to NCEP-ATP III criteria) decreased from 52.9 to 25.8% after 1 yr. Rimonabant was generally

well tolerated, and the most frequently reported side e�ects were gastrointestinal and upper

respiratory tract symptoms (326).

Similar data have been obtained by the ad interim analysis of the �rst year treatment in the

RIO-Europe study (327, 329). More than 67% of patients who completed treatment with 20

mg rimonabant achieved 5% or more weight loss, whereas 39% achieved 10% or more weight

loss. The pattern of weight loss appeared to be sustained for up to 36–40 wk. A concomitant

reduction in waist circumference of about 9 cm was observed in patients treated with 20 mg

rimonabant. A signi�cant improvement of lipid and glycemic pro�le was also observed in

this study in patients with 20 mg rimonabant, with a signi�cant increase in HDL-cholesterol

(22% vs. 14% in placebo-treated patients) and a concomitant reduction of triglycerides (6.8%

vs. an increase of 8.3% in placebo-treated patients). As expected by studies in the animals

described above, the study of Van Gaal et al. (327) demonstrated that rimonabant adds a

further important and signi�cant weight-independent e�ect on lipid parameters to the

positive e�ects derived from weight loss and waist reduction. In fact, as determined by

statistical analysis, the e�ect of 20 mg rimonabant on both HDL-cholesterol and

tryglicerides at 12 months has been shown to be partly independent of weight loss, being

60% of the increase in HDL-cholesterol and 45% of the reduction in trygliceride accounted

for by weight loss, and the remainder due to reasons not related to body weight changes

(327). Although Van Gaal et al. (327) proposed that a rise in adiponectin might be responsible

for these relevant positive changes in lipid pro�le, other mechanisms might enter into play.

Full understanding of these still unknown modes of action is urgently needed to better

characterize the ideal phenotype of obese patients to be targeted with CB1 receptor

antagonist drugs.

Rimonabant treatment was well tolerated, and the most common adverse events experienced

with 20 mg rimonabant were gastrointestinal symptoms such as nausea and diarrhea and

mood disorders such as anxiety and depression. However, the e�ects were found to be mild,

and the discontinuation rate due to these events was similar between patients taking 20 mg

rimonabant or placebo. The genesis of these adverse events might be explained by bearing in

mind that, as explained above, CB1 receptor plays a role in gastrointestinal motility and in

HPA axis activation. Nausea and diarrhea on the one hand and anxiety and depression on the

other hand might be due to CB1 receptor pharmacological blockade.

Concerning studies in humans, a very recent report (330) con�rms, on a genetic basis, the

possible association between the chronic pathological overactivation of the endocannabinoid

system and the development of obesity. In fact, in a large cohort of Caucasian and black

subjects, overweight and obesity have been found to be associated with a polymorphism in

FAAH. This genetic variant predicts a substitution of threonine for a highly conserved proline
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residue (P129T). It has been observed that patients carrying this polymorphism may have

approximately half the enzymatic activity of FAAH. This may lead to a reduced inactivation of

AEA and, eventually, to an inappropriate chronic increase of endocannabinoid tone (330). In

such a context, a recent work (60) showed increased circulating levels of AEA and 2-AG in

obese women when compared with a lean control group. Moreover, in the same study, a

marked down-regulation of FAAH gene expression in adipose tissue of obese women has

been found, suggesting that the increased endocannabinoid levels may be secondary to

decreased enzymatic degradation (60).

VI. Summary and Perspectives

A number of studies show that the endocannabinoid system profoundly in�uences both

hormone secretion and metabolic processes. Animal models have represented the ideal tool

for advancing the understanding of the mechanisms of these functions. However, the data

derived from early studies were not always straightforward in the conclusions. The

contradictory results had to be largely attributed to the heterogeneous variety of substances,

dosages, and routes of administration used in each experimental model. Studies in humans

with marijuana or Δ -THC were even more contradictory in their conclusions, because no

standardization of dose was used and no stringent criteria (i.e., randomization) of patient

recruitment were de�ned in nearly all the experimental models.

However, the generation of CB1  mice and the introduction of CB1 receptor antagonists

initially in animal models and later in humans provided a remarkable stimulus to better

characterize the functions of the endocannabinoid system in the regulation of hormone

secretion and metabolic processes (Fig. 3).

9

−/−

FIG. 3.



6/23/2018 Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance | Endocrine Reviews | Oxford Academic

https://academic.oup.com/edrv/article/27/1/73/2355171 46/93

Skip to Main Content

As a general conclusion, the endocannabinoid system appears to play a very important

regulatory role in the secretion of hormones related to reproductive functions and to stress

responses. These observations have led to some important clinical considerations. High

levels of endocannabinoids seem to negatively a�ect reproduction by acting at di�erent sites.

It is therefore possible to speculate about a clinical use of CB1 receptor antagonists to

ameliorate gonadotropin pulsatility or to improve fertilization capability. On the other hand,

endocannabinoids are important modulators in the physiological response of the HPA axis

during repetitive stress conditions and in pathological conditions, such as anxiety, phobias,

depression, and posttraumatic stress disorders (16, 147). Moreover, the endocannabinoid

system has been proposed as playing an important role in protection against neurotoxicity

and, possibly, certain forms of epilepsy (115, 331, 332). Drugs presumed to increase

endocannabinoid tone are therefore currently proposed as a new therapeutical frontier to

treat anxiety-related disorders and neurodegenerative diseases (82). The use of drugs acting

as antagonists of CB1 receptor should thus be carefully monitored when administered, for

instance, to patients with anxiety traits, epilepsy, or neurodegenerative disorders.

The anecdotes regarding the orexigenic properties of marijuana have nowadays been

substantiated by an impressive number of reports that make it possible to de�nitively

include cannabinoids in the large family of orexigenic signals. This large body of data
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provided the basis to establish a novel approach to tackle obesity and related disorders by

means, as strongly suggested by the clinical trials with rimonabant, of a CB1 receptor

antagonist.

During the last few years, it has become evident that multiple mechanisms of action, not

solely limited to the CNS, are involved in the endocannabinoid-mediated control of food

intake and energy balance. The full understanding of these modes of action may lead to the

identi�cation of the particular types of obesity where treatment with CB1 receptor

antagonists work most e�ciently. The potential clinical use of rimonabant will also help us

to clarify how the endocannabinoid system a�ects the physiological functions and the

pathological diseases related to hormonal secretion and energy balance.

Note Added in Proof

After this manuscript was accepted, the complete RIO-Lipids study was published (see

Refs.326 and 333).
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D1, dopamine receptor type 1;

D2, dopamine receptor type 2;

DIO, diet-induced obesity;

FAAH, fatty acid amide hydrolase;

GABA, γ-aminobutyric acid;

HDL, high-density lipoprotein;

HPA, hypothalamus-pituitary-adrenal;

IHC, immunohistochemistry;

ISH, in situ hybridization;

MCR4, melanocortin receptor type 4;

OEA, oleoylethanolamide;

PPAR, peroxisome proliferator-activated receptor;

PRL, prolactin;

PVN, paraventricular nucleus;

RIO, rimonabant in obesity;

Δ -THC, Δ -tetrahydrocannabinol;

UCP, uncoupling protein;

VTA, ventral tegmental area.
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